![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1v0e | Structured version Visualization version GIF version |
Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgr1v0e | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph) | |
2 | vex 3339 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
3 | 2 | a1i 11 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝑣 ∈ V) |
4 | fusgredgfi.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | eqeq1i 2761 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣}) |
6 | 5 | biimpi 206 | . . . . . . . . 9 ⊢ (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣}) |
7 | 6 | adantl 473 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣}) |
8 | usgr1vr 26342 | . . . . . . . . 9 ⊢ ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | |
9 | 8 | 3adant1 1125 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
10 | 1, 3, 7, 9 | syl3anc 1477 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
11 | 1, 10 | mpd 15 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅) |
12 | fusgredgfi.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 12 | eqeq1i 2761 | . . . . . . 7 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
14 | usgruhgr 26273 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
15 | uhgriedg0edg0 26217 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
17 | 16 | adantr 472 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
18 | 13, 17 | syl5bb 272 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
19 | 11, 18 | mpbird 247 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅) |
20 | 19 | ex 449 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅)) |
21 | 20 | exlimdv 2006 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅)) |
22 | fvex 6358 | . . . . 5 ⊢ (Vtx‘𝐺) ∈ V | |
23 | 4, 22 | eqeltri 2831 | . . . 4 ⊢ 𝑉 ∈ V |
24 | hash1snb 13395 | . . . 4 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) | |
25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) |
26 | fvex 6358 | . . . . 5 ⊢ (Edg‘𝐺) ∈ V | |
27 | 12, 26 | eqeltri 2831 | . . . 4 ⊢ 𝐸 ∈ V |
28 | hasheq0 13342 | . . . 4 ⊢ (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)) | |
29 | 27, 28 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)) |
30 | 21, 25, 29 | 3imtr4d 283 | . 2 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0)) |
31 | 30 | imp 444 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1628 ∃wex 1849 ∈ wcel 2135 Vcvv 3336 ∅c0 4054 {csn 4317 ‘cfv 6045 0cc0 10124 1c1 10125 ♯chash 13307 Vtxcvtx 26069 iEdgciedg 26070 Edgcedg 26134 UHGraphcuhgr 26146 USGraphcusgr 26239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-card 8951 df-cda 9178 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-2 11267 df-n0 11481 df-xnn0 11552 df-z 11566 df-uz 11876 df-fz 12516 df-hash 13308 df-edg 26135 df-uhgr 26148 df-upgr 26172 df-uspgr 26240 df-usgr 26241 |
This theorem is referenced by: cusgrsizeindb1 26552 |
Copyright terms: Public domain | W3C validator |