Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v0e Structured version   Visualization version   GIF version

Theorem usgr1v0e 26413
 Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr1v0e ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)

Proof of Theorem usgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph)
2 vex 3339 . . . . . . . . 9 𝑣 ∈ V
32a1i 11 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝑣 ∈ V)
4 fusgredgfi.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54eqeq1i 2761 . . . . . . . . . 10 (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣})
65biimpi 206 . . . . . . . . 9 (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣})
76adantl 473 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣})
8 usgr1vr 26342 . . . . . . . . 9 ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
983adant1 1125 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
101, 3, 7, 9syl3anc 1477 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
111, 10mpd 15 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅)
12 fusgredgfi.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1312eqeq1i 2761 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
14 usgruhgr 26273 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
15 uhgriedg0edg0 26217 . . . . . . . . 9 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1614, 15syl 17 . . . . . . . 8 (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1716adantr 472 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1813, 17syl5bb 272 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
1911, 18mpbird 247 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅)
2019ex 449 . . . 4 (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅))
2120exlimdv 2006 . . 3 (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅))
22 fvex 6358 . . . . 5 (Vtx‘𝐺) ∈ V
234, 22eqeltri 2831 . . . 4 𝑉 ∈ V
24 hash1snb 13395 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2523, 24mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
26 fvex 6358 . . . . 5 (Edg‘𝐺) ∈ V
2712, 26eqeltri 2831 . . . 4 𝐸 ∈ V
28 hasheq0 13342 . . . 4 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2927, 28mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
3021, 25, 293imtr4d 283 . 2 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0))
3130imp 444 1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1628  ∃wex 1849   ∈ wcel 2135  Vcvv 3336  ∅c0 4054  {csn 4317  ‘cfv 6045  0cc0 10124  1c1 10125  ♯chash 13307  Vtxcvtx 26069  iEdgciedg 26070  Edgcedg 26134  UHGraphcuhgr 26146  USGraphcusgr 26239 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-n0 11481  df-xnn0 11552  df-z 11566  df-uz 11876  df-fz 12516  df-hash 13308  df-edg 26135  df-uhgr 26148  df-upgr 26172  df-uspgr 26240  df-usgr 26241 This theorem is referenced by:  cusgrsizeindb1  26552
 Copyright terms: Public domain W3C validator