![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr0vb | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, is a simple graph iff the edge function is empty. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Revised by AV, 16-Oct-2020.) |
Ref | Expression |
---|---|
usgr0vb | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruhgr 26300 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
2 | uhgr0vb 26188 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
3 | 1, 2 | syl5ib 234 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
4 | simpl 468 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
5 | simpr 471 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
6 | 4, 5 | usgr0e 26351 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ USGraph) |
7 | 6 | ex 397 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph)) |
8 | 7 | adantr 466 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ USGraph)) |
9 | 3, 8 | impbid 202 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∅c0 4063 ‘cfv 6030 Vtxcvtx 26095 iEdgciedg 26096 UHGraphcuhgr 26172 USGraphcusgr 26266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-i2m1 10210 ax-1ne0 10211 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-2 11285 df-uhgr 26174 df-upgr 26198 df-uspgr 26267 df-usgr 26268 |
This theorem is referenced by: usgr0v 26356 usgr1v 26371 |
Copyright terms: Public domain | W3C validator |