MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0eop Structured version   Visualization version   GIF version

Theorem usgr0eop 26183
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0eop (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph)

Proof of Theorem usgr0eop
StepHypRef Expression
1 opex 4962 . . 3 𝑉, ∅⟩ ∈ V
21a1i 11 . 2 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ V)
3 0ex 4823 . . 3 ∅ ∈ V
4 opiedgfv 25932 . . 3 ((𝑉𝑊 ∧ ∅ ∈ V) → (iEdg‘⟨𝑉, ∅⟩) = ∅)
53, 4mpan2 707 . 2 (𝑉𝑊 → (iEdg‘⟨𝑉, ∅⟩) = ∅)
62, 5usgr0e 26173 1 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  c0 3948  cop 4216  cfv 5926  iEdgciedg 25920  USGraphcusgr 26089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fv 5934  df-2nd 7211  df-iedg 25922  df-usgr 26091
This theorem is referenced by:  rgrusgrprc  26541
  Copyright terms: Public domain W3C validator