Step | Hyp | Ref
| Expression |
1 | | wrdfin 13518 |
. . 3
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) |
2 | | wrdf 13505 |
. . 3
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
3 | | simpr 471 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
4 | 3 | adantr 466 |
. . . . . . . 8
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
5 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
6 | 5 | fveq2d 6336 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑥))) |
7 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑃‘𝑘) = (𝑃‘𝑥)) |
8 | | fvoveq1 6815 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑥 + 1))) |
9 | 7, 8 | preq12d 4410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
10 | 6, 9 | eqeq12d 2785 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
11 | 10 | rspcv 3454 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))})) |
12 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) |
13 | 12 | fveq2d 6336 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑦))) |
14 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑃‘𝑘) = (𝑃‘𝑦)) |
15 | | fvoveq1 6815 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑦 + 1))) |
16 | 14, 15 | preq12d 4410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
17 | 13, 16 | eqeq12d 2785 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑦 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) |
18 | 17 | rspcv 3454 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) |
19 | 11, 18 | anim12ii 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}))) |
20 | | fveq2 6332 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) |
21 | | simpl 468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
22 | 21 | eqcomd 2776 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹‘𝑥))) |
23 | 22 | adantl 467 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = (𝐼‘(𝐹‘𝑥))) |
24 | | simpl 468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦))) |
25 | | simpr 471 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
26 | 25 | adantl 467 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
27 | 23, 24, 26 | 3eqtrd 2808 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) |
28 | | fvex 6342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘𝑥) ∈ V |
29 | | fvex 6342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘(𝑥 + 1)) ∈ V |
30 | | fvex 6342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘𝑦) ∈ V |
31 | | fvex 6342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃‘(𝑦 + 1)) ∈ V |
32 | 28, 29, 30, 31 | preq12b 4511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))} ↔ (((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)))) |
33 | | dff13 6654 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ↔ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏))) |
34 | | elfzofz 12692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ 𝑥 ∈
(0...(♯‘𝐹))) |
35 | | elfzofz 12692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ 𝑦 ∈
(0...(♯‘𝐹))) |
36 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = 𝑥 → (𝑃‘𝑎) = (𝑃‘𝑥)) |
37 | 36 | eqeq1d 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = 𝑥 → ((𝑃‘𝑎) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘𝑏))) |
38 | | eqeq1 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = 𝑥 → (𝑎 = 𝑏 ↔ 𝑥 = 𝑏)) |
39 | 37, 38 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = 𝑥 → (((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏))) |
40 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑦 → (𝑃‘𝑏) = (𝑃‘𝑦)) |
41 | 40 | eqeq2d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑦 → ((𝑃‘𝑥) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘𝑦))) |
42 | | eqeq2 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 = 𝑦 → (𝑥 = 𝑏 ↔ 𝑥 = 𝑦)) |
43 | 41, 42 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑏 = 𝑦 → (((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
44 | 39, 43 | rspc2v 3470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈
(0...(♯‘𝐹))
∧ 𝑦 ∈
(0...(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
45 | 34, 35, 44 | syl2an 575 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦))) |
46 | 45 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑃‘𝑥) = (𝑃‘𝑦) → 𝑥 = 𝑦)))) |
47 | 46 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃‘𝑥) = (𝑃‘𝑦) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
48 | 47 | adantr 466 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
49 | | hashcl 13348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹 ∈ Fin →
(♯‘𝐹) ∈
ℕ0) |
50 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((♯‘𝐹)
∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → 𝑥 ∈ (0...(♯‘𝐹)))) |
51 | | fzofzp1 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ (𝑦 + 1) ∈
(0...(♯‘𝐹))) |
52 | 50, 51 | anim12d1 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((♯‘𝐹)
∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹))))) |
53 | 52 | imp 393 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑥 ∈ (0...(♯‘𝐹)) ∧ (𝑦 + 1) ∈ (0...(♯‘𝐹)))) |
54 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑏 = (𝑦 + 1) → (𝑃‘𝑏) = (𝑃‘(𝑦 + 1))) |
55 | 54 | eqeq2d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = (𝑦 + 1) → ((𝑃‘𝑥) = (𝑃‘𝑏) ↔ (𝑃‘𝑥) = (𝑃‘(𝑦 + 1)))) |
56 | | eqeq2 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = (𝑦 + 1) → (𝑥 = 𝑏 ↔ 𝑥 = (𝑦 + 1))) |
57 | 55, 56 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = (𝑦 + 1) → (((𝑃‘𝑥) = (𝑃‘𝑏) → 𝑥 = 𝑏) ↔ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
58 | 39, 57 | rspc2v 3470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈
(0...(♯‘𝐹))
∧ (𝑦 + 1) ∈
(0...(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
59 | 53, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1)))) |
60 | 59 | imp 393 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) → 𝑥 = (𝑦 + 1))) |
61 | | fzofzp1 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 ∈
(0..^(♯‘𝐹))
→ (𝑥 + 1) ∈
(0...(♯‘𝐹))) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((♯‘𝐹)
∈ ℕ0 → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝑥 + 1) ∈ (0...(♯‘𝐹)))) |
63 | 62, 35 | anim12d1 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((♯‘𝐹)
∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹))))) |
64 | 63 | imp 393 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝑦 ∈ (0...(♯‘𝐹)))) |
65 | | fveq2 6332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑎 = (𝑥 + 1) → (𝑃‘𝑎) = (𝑃‘(𝑥 + 1))) |
66 | 65 | eqeq1d 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = (𝑥 + 1) → ((𝑃‘𝑎) = (𝑃‘𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑏))) |
67 | | eqeq1 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = (𝑥 + 1) → (𝑎 = 𝑏 ↔ (𝑥 + 1) = 𝑏)) |
68 | 66, 67 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑎 = (𝑥 + 1) → (((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) → (𝑥 + 1) = 𝑏))) |
69 | 40 | eqeq2d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑦 → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) ↔ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) |
70 | | eqeq2 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑦 → ((𝑥 + 1) = 𝑏 ↔ (𝑥 + 1) = 𝑦)) |
71 | 69, 70 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑦 → (((𝑃‘(𝑥 + 1)) = (𝑃‘𝑏) → (𝑥 + 1) = 𝑏) ↔ ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
72 | 68, 71 | rspc2v 3470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑥 + 1) ∈
(0...(♯‘𝐹))
∧ 𝑦 ∈
(0...(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
73 | 64, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦))) |
74 | 73 | imp 393 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → ((𝑃‘(𝑥 + 1)) = (𝑃‘𝑦) → (𝑥 + 1) = 𝑦)) |
75 | 60, 74 | anim12d 588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦))) |
76 | 75 | expimpd 441 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦))) |
77 | | oveq1 6799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1)) |
78 | 77 | eqeq1d 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦)) |
79 | 78 | adantl 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 ↔ ((𝑦 + 1) + 1) = 𝑦)) |
80 | | elfzonn0 12720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ 𝑦 ∈
ℕ0) |
81 | | nn0cn 11503 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
82 | | add1p1 11484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) + 1) = (𝑦 + 2)) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ ℕ0
→ ((𝑦 + 1) + 1) =
(𝑦 + 2)) |
84 | 83 | eqeq1d 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ ℕ0
→ (((𝑦 + 1) + 1) =
𝑦 ↔ (𝑦 + 2) = 𝑦)) |
85 | | 2cnd 11294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 2 ∈ ℂ) |
86 | | 2ne0 11314 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ 2 ≠
0 |
87 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ 2 ≠ 0) |
88 | | addn0nid 10652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑦 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (𝑦 + 2) ≠ 𝑦) |
89 | 81, 85, 87, 88 | syl3anc 1475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 2) ≠ 𝑦) |
90 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 + 2) = 𝑦 → ((𝑦 + 2) ≠ 𝑦 → 𝑥 = 𝑦)) |
91 | 89, 90 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 ∈ ℕ0
→ ((𝑦 + 2) = 𝑦 → 𝑥 = 𝑦)) |
92 | 84, 91 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 ∈ ℕ0
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
93 | 80, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
94 | 93 | adantl 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (((𝑦 + 1) + 1) =
𝑦 → 𝑥 = 𝑦)) |
95 | 94 | adantr 466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
∧ 𝑥 = (𝑦 + 1)) → (((𝑦 + 1) + 1) = 𝑦 → 𝑥 = 𝑦)) |
96 | 79, 95 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
∧ 𝑥 = (𝑦 + 1)) → ((𝑥 + 1) = 𝑦 → 𝑥 = 𝑦)) |
97 | 96 | expimpd 441 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦)) |
98 | 97 | adantl 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑥 = (𝑦 + 1) ∧ (𝑥 + 1) = 𝑦) → 𝑥 = 𝑦)) |
99 | 76, 98 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦)) |
100 | 99 | ex 397 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((♯‘𝐹)
∈ ℕ0 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦))) |
101 | 49, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 ∈ Fin → ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ ((∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → 𝑥 = 𝑦))) |
102 | 101 | com3l 89 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ ((∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) ∧ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝐹 ∈ Fin → 𝑥 = 𝑦))) |
103 | 102 | expd 400 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (𝐹 ∈ Fin → 𝑥 = 𝑦)))) |
104 | 103 | com34 91 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑎 ∈
(0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → 𝑥 = 𝑦)))) |
105 | 104 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦)) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
106 | 48, 105 | jaoi 837 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
107 | 106 | adantld 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑎 ∈ (0...(♯‘𝐹))∀𝑏 ∈ (0...(♯‘𝐹))((𝑃‘𝑎) = (𝑃‘𝑏) → 𝑎 = 𝑏)) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
108 | 33, 107 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
109 | 108 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑃‘𝑥) = (𝑃‘𝑦) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑦 + 1))) ∨ ((𝑃‘𝑥) = (𝑃‘(𝑦 + 1)) ∧ (𝑃‘(𝑥 + 1)) = (𝑃‘𝑦))) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
110 | 32, 109 | sylbi 207 |
. . . . . . . . . . . . . . . . . 18
⊢ ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
111 | 27, 110 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) ∧ ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))})) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦)))) |
112 | 111 | ex 397 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑦)) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))) |
113 | 20, 112 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑥 = 𝑦))))) |
114 | 113 | com15 101 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∧ (𝐼‘(𝐹‘𝑦)) = {(𝑃‘𝑦), (𝑃‘(𝑦 + 1))}) → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
115 | 19, 114 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
(0..^(♯‘𝐹))
∧ 𝑦 ∈
(0..^(♯‘𝐹)))
→ (∀𝑘 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
116 | 115 | com14 96 |
. . . . . . . . . . . 12
⊢ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))))) |
117 | 116 | imp 393 |
. . . . . . . . . . 11
⊢ ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝐹 ∈ Fin → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
118 | 117 | impcom 394 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ((𝑥 ∈ (0..^(♯‘𝐹)) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
119 | 118 | ralrimivv 3118 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Fin ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
120 | 119 | adantlr 686 |
. . . . . . . 8
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
121 | | dff13 6654 |
. . . . . . . 8
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
122 | 4, 120, 121 | sylanbrc 564 |
. . . . . . 7
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
123 | | df-f1 6036 |
. . . . . . 7
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) |
124 | 122, 123 | sylib 208 |
. . . . . 6
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹)) |
125 | | simpr 471 |
. . . . . 6
⊢ ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun ◡𝐹) → Fun ◡𝐹) |
126 | 124, 125 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) ∧ (𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) → Fun ◡𝐹) |
127 | 126 | ex 397 |
. . . 4
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → Fun ◡𝐹)) |
128 | 127 | expd 400 |
. . 3
⊢ ((𝐹 ∈ Fin ∧ 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹))) |
129 | 1, 2, 128 | syl2anc 565 |
. 2
⊢ (𝐹 ∈ Word dom 𝐼 → (𝑃:(0...(♯‘𝐹))–1-1→𝑉 → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹))) |
130 | 129 | impcom 394 |
1
⊢ ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ 𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹)) |