![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for upgrres1 26427. (Contributed by AV, 7-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
upgrres1lem3 | ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6335 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) |
3 | upgrres1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | upgrres1.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | upgrres1.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
6 | 3, 4, 5 | upgrres1lem1 26423 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) |
7 | opiedgfv 26107 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ ( I ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉) = ( I ↾ 𝐹) |
9 | 2, 8 | eqtri 2792 | 1 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∉ wnel 3045 {crab 3064 Vcvv 3349 ∖ cdif 3718 {csn 4314 〈cop 4320 I cid 5156 ↾ cres 5251 ‘cfv 6031 Vtxcvtx 26094 iEdgciedg 26095 Edgcedg 26159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-iota 5994 df-fun 6033 df-fv 6039 df-2nd 7315 df-iedg 26097 |
This theorem is referenced by: upgrres1 26427 umgrres1 26428 usgrres1 26429 nbupgrres 26487 |
Copyright terms: Public domain | W3C validator |