MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrpredgv Structured version   Visualization version   GIF version

Theorem upgrpredgv 26079
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgrpredgv ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem upgrpredgv
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2upgredg 26077 . . 3 ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
433adant2 1100 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛})
5 preq12bg 4417 . . . . 5 (((𝑀𝑈𝑁𝑊) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
653ad2antl2 1244 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚))))
7 eleq1 2718 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑉𝑀𝑉))
87eqcoms 2659 . . . . . . . . 9 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
98biimpd 219 . . . . . . . 8 (𝑀 = 𝑚 → (𝑚𝑉𝑀𝑉))
10 eleq1 2718 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑉𝑁𝑉))
1110eqcoms 2659 . . . . . . . . 9 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
1211biimpd 219 . . . . . . . 8 (𝑁 = 𝑛 → (𝑛𝑉𝑁𝑉))
139, 12im2anan9 898 . . . . . . 7 ((𝑀 = 𝑚𝑁 = 𝑛) → ((𝑚𝑉𝑛𝑉) → (𝑀𝑉𝑁𝑉)))
1413com12 32 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑀𝑉𝑁𝑉)))
15 eleq1 2718 . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝑛𝑉𝑀𝑉))
1615eqcoms 2659 . . . . . . . . . 10 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
1716biimpd 219 . . . . . . . . 9 (𝑀 = 𝑛 → (𝑛𝑉𝑀𝑉))
18 eleq1 2718 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑚𝑉𝑁𝑉))
1918eqcoms 2659 . . . . . . . . . 10 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2019biimpd 219 . . . . . . . . 9 (𝑁 = 𝑚 → (𝑚𝑉𝑁𝑉))
2117, 20im2anan9 898 . . . . . . . 8 ((𝑀 = 𝑛𝑁 = 𝑚) → ((𝑛𝑉𝑚𝑉) → (𝑀𝑉𝑁𝑉)))
2221com12 32 . . . . . . 7 ((𝑛𝑉𝑚𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2322ancoms 468 . . . . . 6 ((𝑚𝑉𝑛𝑉) → ((𝑀 = 𝑛𝑁 = 𝑚) → (𝑀𝑉𝑁𝑉)))
2414, 23jaod 394 . . . . 5 ((𝑚𝑉𝑛𝑉) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
2524adantl 481 . . . 4 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → (((𝑀 = 𝑚𝑁 = 𝑛) ∨ (𝑀 = 𝑛𝑁 = 𝑚)) → (𝑀𝑉𝑁𝑉)))
266, 25sylbid 230 . . 3 (((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚𝑉𝑛𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
2726rexlimdvva 3067 . 2 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚𝑉𝑛𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀𝑉𝑁𝑉)))
284, 27mpd 15 1 ((𝐺 ∈ UPGraph ∧ (𝑀𝑈𝑁𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  {cpr 4212  cfv 5926  Vtxcvtx 25919  Edgcedg 25984  UPGraphcupgr 26020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-upgr 26022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator