MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrop Structured version   Visualization version   GIF version

Theorem upgrop 26210
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)

Proof of Theorem upgrop
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2771 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 26202 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
4 fvex 6344 . . . 4 (Vtx‘𝐺) ∈ V
5 fvex 6344 . . . 4 (iEdg‘𝐺) ∈ V
64, 5pm3.2i 456 . . 3 ((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V)
7 opex 5061 . . . . 5 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
8 eqid 2771 . . . . . 6 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
9 eqid 2771 . . . . . 6 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
108, 9isupgr 26200 . . . . 5 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
117, 10mp1i 13 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
12 opiedgfv 26108 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺))
1312dmeqd 5463 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = dom (iEdg‘𝐺))
14 opvtxfv 26105 . . . . . . . 8 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺))
1514pweqd 4303 . . . . . . 7 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → 𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = 𝒫 (Vtx‘𝐺))
1615difeq1d 3878 . . . . . 6 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) = (𝒫 (Vtx‘𝐺) ∖ {∅}))
1716rabeqdv 3344 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → {𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1812, 13, 17feq123d 6173 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → ((iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
1911, 18bitrd 268 . . 3 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
206, 19mp1i 13 . 2 (𝐺 ∈ UPGraph → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
213, 20mpbird 247 1 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2145  {crab 3065  Vcvv 3351  cdif 3720  c0 4063  𝒫 cpw 4298  {csn 4317  cop 4323   class class class wbr 4787  dom cdm 5250  wf 6026  cfv 6030  cle 10281  2c2 11276  chash 13321  Vtxcvtx 26095  iEdgciedg 26096  UPGraphcupgr 26196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-1st 7319  df-2nd 7320  df-vtx 26097  df-iedg 26098  df-upgr 26198
This theorem is referenced by:  finsumvtxdg2size  26681
  Copyright terms: Public domain W3C validator