Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1e Structured version   Visualization version   GIF version

Theorem upgr1e 26228
 Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 26356. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
upgr1e.v 𝑉 = (Vtx‘𝐺)
upgr1e.a (𝜑𝐴𝑋)
upgr1e.b (𝜑𝐵𝑉)
upgr1e.c (𝜑𝐶𝑉)
upgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
upgr1e (𝜑𝐺 ∈ UPGraph)

Proof of Theorem upgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgr1e.a . . . . . 6 (𝜑𝐴𝑋)
2 prex 5058 . . . . . . . 8 {𝐵, 𝐶} ∈ V
32snid 4353 . . . . . . 7 {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}
43a1i 11 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}})
51, 4fsnd 6341 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{{𝐵, 𝐶}})
6 upgr1e.b . . . . . . . . 9 (𝜑𝐵𝑉)
7 upgr1e.c . . . . . . . . 9 (𝜑𝐶𝑉)
86, 7prssd 4499 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ⊆ 𝑉)
9 upgr1e.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
108, 9syl6sseq 3792 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
112elpw 4308 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
1210, 11sylibr 224 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺))
1312, 6upgr1elem 26227 . . . . 5 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
145, 13fssd 6218 . . . 4 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
152a1i 11 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ∈ V)
1615, 6upgr1elem 26227 . . . . . . 7 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
175, 16fssd 6218 . . . . . 6 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 fdm 6212 . . . . . 6 ({⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (V ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
1917, 18syl 17 . . . . 5 (𝜑 → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2019feq2d 6192 . . . 4 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2114, 20mpbird 247 . . 3 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
22 upgr1e.e . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
2322dmeqd 5481 . . . 4 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
2422, 23feq12d 6194 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2521, 24mpbird 247 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2691vgrex 26102 . . 3 (𝐵𝑉𝐺 ∈ V)
27 eqid 2760 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
28 eqid 2760 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2927, 28isupgr 26199 . . 3 (𝐺 ∈ V → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
306, 26, 293syl 18 . 2 (𝜑 → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
3125, 30mpbird 247 1 (𝜑𝐺 ∈ UPGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1632   ∈ wcel 2139  {crab 3054  Vcvv 3340   ∖ cdif 3712   ⊆ wss 3715  ∅c0 4058  𝒫 cpw 4302  {csn 4321  {cpr 4323  ⟨cop 4327   class class class wbr 4804  dom cdm 5266  ⟶wf 6045  ‘cfv 6049   ≤ cle 10287  2c2 11282  ♯chash 13331  Vtxcvtx 26094  iEdgciedg 26095  UPGraphcupgr 26195 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332  df-upgr 26197 This theorem is referenced by:  upgr1eop  26230  upgr1eopALT  26232
 Copyright terms: Public domain W3C validator