Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwdomg Structured version   Visualization version   GIF version

Theorem unwdomg 8644
 Description: Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
unwdomg ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼* (𝐵𝐷))

Proof of Theorem unwdomg
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 8643 . . 3 (𝐴* 𝐵 → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
213ad2ant1 1126 . 2 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
3 brwdom3i 8643 . . . . 5 (𝐶* 𝐷 → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
433ad2ant2 1127 . . . 4 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
54adantr 466 . . 3 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))
6 relwdom 8626 . . . . . . . . . 10 Rel ≼*
76brrelexi 5298 . . . . . . . . 9 (𝐴* 𝐵𝐴 ∈ V)
86brrelexi 5298 . . . . . . . . 9 (𝐶* 𝐷𝐶 ∈ V)
9 unexg 7105 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐶) ∈ V)
107, 8, 9syl2an 575 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴𝐶) ∈ V)
11103adant3 1125 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ∈ V)
1211adantr 466 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐴𝐶) ∈ V)
136brrelex2i 5299 . . . . . . . . 9 (𝐴* 𝐵𝐵 ∈ V)
146brrelex2i 5299 . . . . . . . . 9 (𝐶* 𝐷𝐷 ∈ V)
15 unexg 7105 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
1613, 14, 15syl2an 575 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐵𝐷) ∈ V)
17163adant3 1125 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ∈ V)
1817adantr 466 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐵𝐷) ∈ V)
19 elun 3902 . . . . . . . . . 10 (𝑦 ∈ (𝐴𝐶) ↔ (𝑦𝐴𝑦𝐶))
20 eqeq1 2774 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝑎 = (𝑓𝑏) ↔ 𝑦 = (𝑓𝑏)))
2120rexbidv 3199 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (∃𝑏𝐵 𝑎 = (𝑓𝑏) ↔ ∃𝑏𝐵 𝑦 = (𝑓𝑏)))
2221rspcva 3456 . . . . . . . . . . . . . . 15 ((𝑦𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑏𝐵 𝑦 = (𝑓𝑏))
23 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝑓𝑏) = (𝑓𝑧))
2423eqeq2d 2780 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → (𝑦 = (𝑓𝑏) ↔ 𝑦 = (𝑓𝑧)))
2524cbvrexv 3320 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵 𝑦 = (𝑓𝑏) ↔ ∃𝑧𝐵 𝑦 = (𝑓𝑧))
26 ssun1 3925 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ (𝐵𝐷)
27 iftrue 4229 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 → if(𝑧𝐵, 𝑓, 𝑔) = 𝑓)
2827fveq1d 6334 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) = (𝑓𝑧))
2928eqeq2d 2780 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → (𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) ↔ 𝑦 = (𝑓𝑧)))
3029biimprd 238 . . . . . . . . . . . . . . . . . 18 (𝑧𝐵 → (𝑦 = (𝑓𝑧) → 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
3130reximia 3156 . . . . . . . . . . . . . . . . 17 (∃𝑧𝐵 𝑦 = (𝑓𝑧) → ∃𝑧𝐵 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
32 ssrexv 3814 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (𝐵𝐷) → (∃𝑧𝐵 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
3326, 31, 32mpsyl 68 . . . . . . . . . . . . . . . 16 (∃𝑧𝐵 𝑦 = (𝑓𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3425, 33sylbi 207 . . . . . . . . . . . . . . 15 (∃𝑏𝐵 𝑦 = (𝑓𝑏) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3522, 34syl 17 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3635ancoms 455 . . . . . . . . . . . . 13 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3736adantlr 686 . . . . . . . . . . . 12 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
3837adantll 685 . . . . . . . . . . 11 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦𝐴) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
39 eqeq1 2774 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝑎 = (𝑔𝑏) ↔ 𝑦 = (𝑔𝑏)))
4039rexbidv 3199 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (∃𝑏𝐷 𝑎 = (𝑔𝑏) ↔ ∃𝑏𝐷 𝑦 = (𝑔𝑏)))
41 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑧 → (𝑔𝑏) = (𝑔𝑧))
4241eqeq2d 2780 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑧 → (𝑦 = (𝑔𝑏) ↔ 𝑦 = (𝑔𝑧)))
4342cbvrexv 3320 . . . . . . . . . . . . . . . 16 (∃𝑏𝐷 𝑦 = (𝑔𝑏) ↔ ∃𝑧𝐷 𝑦 = (𝑔𝑧))
4440, 43syl6bb 276 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (∃𝑏𝐷 𝑎 = (𝑔𝑏) ↔ ∃𝑧𝐷 𝑦 = (𝑔𝑧)))
4544rspccva 3457 . . . . . . . . . . . . . 14 ((∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) ∧ 𝑦𝐶) → ∃𝑧𝐷 𝑦 = (𝑔𝑧))
46 ssun2 3926 . . . . . . . . . . . . . . 15 𝐷 ⊆ (𝐵𝐷)
47 minel 4174 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝐷 ∧ (𝐵𝐷) = ∅) → ¬ 𝑧𝐵)
4847ancoms 455 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → ¬ 𝑧𝐵)
4948iffalsed 4234 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → if(𝑧𝐵, 𝑓, 𝑔) = 𝑔)
5049fveq1d 6334 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) = (𝑔𝑧))
5150eqeq2d 2780 . . . . . . . . . . . . . . . . . 18 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) ↔ 𝑦 = (𝑔𝑧)))
5251biimprd 238 . . . . . . . . . . . . . . . . 17 (((𝐵𝐷) = ∅ ∧ 𝑧𝐷) → (𝑦 = (𝑔𝑧) → 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5352reximdva 3164 . . . . . . . . . . . . . . . 16 ((𝐵𝐷) = ∅ → (∃𝑧𝐷 𝑦 = (𝑔𝑧) → ∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5453imp 393 . . . . . . . . . . . . . . 15 (((𝐵𝐷) = ∅ ∧ ∃𝑧𝐷 𝑦 = (𝑔𝑧)) → ∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
55 ssrexv 3814 . . . . . . . . . . . . . . 15 (𝐷 ⊆ (𝐵𝐷) → (∃𝑧𝐷 𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
5646, 54, 55mpsyl 68 . . . . . . . . . . . . . 14 (((𝐵𝐷) = ∅ ∧ ∃𝑧𝐷 𝑦 = (𝑔𝑧)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5745, 56sylan2 572 . . . . . . . . . . . . 13 (((𝐵𝐷) = ∅ ∧ (∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) ∧ 𝑦𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5857anassrs 458 . . . . . . . . . . . 12 ((((𝐵𝐷) = ∅ ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦𝐶) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
5958adantlrl 691 . . . . . . . . . . 11 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦𝐶) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6038, 59jaodan 938 . . . . . . . . . 10 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ (𝑦𝐴𝑦𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6119, 60sylan2b 573 . . . . . . . . 9 ((((𝐵𝐷) = ∅ ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6261expl 445 . . . . . . . 8 ((𝐵𝐷) = ∅ → (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
63623ad2ant3 1128 . . . . . . 7 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏)) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧)))
6463impl 443 . . . . . 6 ((((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) ∧ 𝑦 ∈ (𝐴𝐶)) → ∃𝑧 ∈ (𝐵𝐷)𝑦 = (if(𝑧𝐵, 𝑓, 𝑔)‘𝑧))
6512, 18, 64wdom2d 8640 . . . . 5 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏))) → (𝐴𝐶) ≼* (𝐵𝐷))
6665expr 444 . . . 4 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∀𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) → (𝐴𝐶) ≼* (𝐵𝐷)))
6766exlimdv 2012 . . 3 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∃𝑔𝑎𝐶𝑏𝐷 𝑎 = (𝑔𝑏) → (𝐴𝐶) ≼* (𝐵𝐷)))
685, 67mpd 15 . 2 (((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (𝐴𝐶) ≼* (𝐵𝐷))
692, 68exlimddv 2014 1 ((𝐴* 𝐵𝐶* 𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼* (𝐵𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∨ wo 826   ∧ w3a 1070   = wceq 1630  ∃wex 1851   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061  Vcvv 3349   ∪ cun 3719   ∩ cin 3720   ⊆ wss 3721  ∅c0 4061  ifcif 4223   class class class wbr 4784  ‘cfv 6031   ≼* cwdom 8617 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-wdom 8619 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator