![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unt0 | Structured version Visualization version GIF version |
Description: The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
unt0 | ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4184 | 1 ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wral 3014 ∅c0 4023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-v 3306 df-dif 3683 df-nul 4024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |