![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssi | Structured version Visualization version GIF version |
Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
unssi.1 | ⊢ 𝐴 ⊆ 𝐶 |
unssi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
unssi | ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
2 | unssi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) |
4 | unss 3931 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
5 | 3, 4 | mpbi 220 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∪ cun 3714 ⊆ wss 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-un 3721 df-in 3723 df-ss 3730 |
This theorem is referenced by: dmrnssfld 5540 tc2 8794 pwxpndom2 9700 ltrelxr 10312 nn0ssre 11509 nn0ssz 11611 dfle2 12194 difreicc 12518 hashxrcl 13361 ramxrcl 15944 strlemor1OLD 16192 strleun 16195 cssincl 20255 leordtval2 21239 lecldbas 21246 comppfsc 21558 aalioulem2 24308 taylfval 24333 axlowdimlem10 26052 shunssji 28559 shsval3i 28578 shjshsi 28682 spanuni 28734 sshhococi 28736 esumcst 30456 hashf2 30477 sxbrsigalem3 30665 signswch 30969 bj-unrab 33248 bj-tagss 33293 poimirlem16 33757 poimirlem19 33760 poimirlem23 33764 poimirlem29 33770 poimirlem31 33772 poimirlem32 33773 mblfinlem3 33780 mblfinlem4 33781 hdmapevec 37648 rtrclex 38445 trclexi 38448 rtrclexi 38449 cnvrcl0 38453 cnvtrcl0 38454 comptiunov2i 38519 cotrclrcl 38555 cncfiooicclem1 40628 fourierdlem62 40907 |
Copyright terms: Public domain | W3C validator |