![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 3931. Partial converse of unssd 3933. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 3931 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 224 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 477 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∪ cun 3714 ⊆ wss 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-un 3721 df-in 3723 df-ss 3730 |
This theorem is referenced by: ersym 7926 findcard2d 8370 finsschain 8441 r0weon 9046 ackbij1lem16 9270 wunex2 9773 sumsplit 14719 fsumabs 14753 fsumiun 14773 mrieqvlemd 16512 yonedalem1 17134 yonedalem21 17135 yonedalem22 17140 yonffthlem 17144 lsmsp 19309 mplcoe1 19688 mdetunilem9 20649 ordtbas 21219 isufil2 21934 ufileu 21945 filufint 21946 fmfnfm 21984 flimclslem 22010 fclsfnflim 22053 flimfnfcls 22054 imasdsf1olem 22400 mbfeqalem 23629 limcdif 23860 jensenlem1 24934 jensenlem2 24935 jensen 24936 gsumvsca1 30113 gsumvsca2 30114 ordtconnlem1 30301 ssmcls 31793 mclsppslem 31809 rngunsnply 38264 mptrcllem 38441 clcnvlem 38451 brtrclfv2 38540 isotone1 38867 dvnprodlem1 40683 |
Copyright terms: Public domain | W3C validator |