![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unrab | Structured version Visualization version GIF version |
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3059 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | df-rab 3059 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
3 | 1, 2 | uneq12i 3908 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
4 | df-rab 3059 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} | |
5 | unab 4037 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
6 | andi 947 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
7 | 6 | abbii 2877 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
8 | 5, 7 | eqtr4i 2785 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))} |
9 | 4, 8 | eqtr4i 2785 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
10 | 3, 9 | eqtr4i 2785 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 {crab 3054 ∪ cun 3713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-un 3720 |
This theorem is referenced by: rabxm 4104 kmlem3 9186 hashbclem 13448 phiprmpw 15703 efgsfo 18372 dsmmacl 20307 rrxmvallem 23407 mumul 25127 ppiub 25149 lgsquadlem2 25326 edglnl 26258 numclwwlk3lemOLD 27571 numclwwlk3lemlem 27572 hasheuni 30477 measvuni 30607 aean 30637 subfacp1lem6 31495 lineunray 32581 cnambfre 33789 itg2addnclem2 33793 iblabsnclem 33804 orrabdioph 37865 undisjrab 39025 mndpsuppss 42680 |
Copyright terms: Public domain | W3C validator |