![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > unopnorm | Structured version Visualization version GIF version |
Description: A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unopnorm | ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopf1o 29115 | . . . . 5 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
2 | f1of 6279 | . . . . 5 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ) |
4 | 3 | ffvelrnda 6504 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
5 | normcl 28322 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
7 | normcl 28322 | . . 3 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
8 | 7 | adantl 467 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘𝐴) ∈ ℝ) |
9 | normge0 28323 | . . 3 ⊢ ((𝑇‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘(𝑇‘𝐴))) | |
10 | 4, 9 | syl 17 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → 0 ≤ (normℎ‘(𝑇‘𝐴))) |
11 | normge0 28323 | . . 3 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
12 | 11 | adantl 467 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → 0 ≤ (normℎ‘𝐴)) |
13 | unop 29114 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴)) | |
14 | 13 | 3anidm23 1531 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴)) |
15 | normsq 28331 | . . . 4 ⊢ ((𝑇‘𝐴) ∈ ℋ → ((normℎ‘(𝑇‘𝐴))↑2) = ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) | |
16 | 4, 15 | syl 17 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((normℎ‘(𝑇‘𝐴))↑2) = ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) |
17 | normsq 28331 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴)) | |
18 | 17 | adantl 467 | . . 3 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴)) |
19 | 14, 16, 18 | 3eqtr4d 2815 | . 2 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((normℎ‘(𝑇‘𝐴))↑2) = ((normℎ‘𝐴)↑2)) |
20 | 6, 8, 10, 12, 19 | sq11d 13252 | 1 ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ⟶wf 6026 –1-1-onto→wf1o 6029 ‘cfv 6030 (class class class)co 6796 ℝcr 10141 0cc0 10142 ≤ cle 10281 2c2 11276 ↑cexp 13067 ℋchil 28116 ·ih csp 28119 normℎcno 28120 UniOpcuo 28146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-hilex 28196 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvdistr2 28206 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-hnorm 28165 df-hvsub 28168 df-unop 29042 |
This theorem is referenced by: elunop2 29212 nmopun 29213 |
Copyright terms: Public domain | W3C validator |