![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > unopadj2 | Structured version Visualization version GIF version |
Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unopadj2 | ⊢ (𝑇 ∈ UniOp → (adjℎ‘𝑇) = ◡𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unoplin 29109 | . . 3 ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) | |
2 | lnopf 29048 | . . 3 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ) |
4 | cnvunop 29107 | . . 3 ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) | |
5 | unoplin 29109 | . . 3 ⊢ (◡𝑇 ∈ UniOp → ◡𝑇 ∈ LinOp) | |
6 | lnopf 29048 | . . 3 ⊢ (◡𝑇 ∈ LinOp → ◡𝑇: ℋ⟶ ℋ) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ (𝑇 ∈ UniOp → ◡𝑇: ℋ⟶ ℋ) |
8 | unopadj 29108 | . . . 4 ⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (◡𝑇‘𝑦))) | |
9 | 8 | 3expib 1117 | . . 3 ⊢ (𝑇 ∈ UniOp → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (◡𝑇‘𝑦)))) |
10 | 9 | ralrimivv 3108 | . 2 ⊢ (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (◡𝑇‘𝑦))) |
11 | adjeq 29124 | . 2 ⊢ ((𝑇: ℋ⟶ ℋ ∧ ◡𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (◡𝑇‘𝑦))) → (adjℎ‘𝑇) = ◡𝑇) | |
12 | 3, 7, 10, 11 | syl3anc 1477 | 1 ⊢ (𝑇 ∈ UniOp → (adjℎ‘𝑇) = ◡𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ◡ccnv 5265 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℋchil 28106 ·ih csp 28109 LinOpclo 28134 UniOpcuo 28136 adjℎcado 28142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-hilex 28186 ax-hfvadd 28187 ax-hvcom 28188 ax-hvass 28189 ax-hv0cl 28190 ax-hvaddid 28191 ax-hfvmul 28192 ax-hvmulid 28193 ax-hvdistr2 28196 ax-hvmul0 28197 ax-hfi 28266 ax-his1 28269 ax-his2 28270 ax-his3 28271 ax-his4 28272 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-2 11291 df-cj 14058 df-re 14059 df-im 14060 df-hvsub 28158 df-lnop 29030 df-unop 29032 df-adjh 29038 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |