MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopab Structured version   Visualization version   GIF version

Theorem unopab 4761
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}

Proof of Theorem unopab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unab 3927 . . 3 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))}
2 19.43 1850 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
3 andi 929 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
43exbii 1814 . . . . . . 7 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
5 19.43 1850 . . . . . . 7 (∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
64, 5bitr2i 265 . . . . . 6 ((∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
76exbii 1814 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
82, 7bitr3i 266 . . . 4 ((∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
98abbii 2768 . . 3 {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
101, 9eqtri 2673 . 2 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
11 df-opab 4746 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
12 df-opab 4746 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1311, 12uneq12i 3798 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
14 df-opab 4746 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
1510, 13, 143eqtr4i 2683 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1523  wex 1744  {cab 2637  cun 3605  cop 4216  {copab 4745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-opab 4746
This theorem is referenced by:  xpundi  5205  xpundir  5206  cnvun  5573  coundi  5674  coundir  5675  mptun  6063  opsrtoslem1  19532  lgsquadlem3  25152
  Copyright terms: Public domain W3C validator