MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpid Structured version   Visualization version   GIF version

Theorem unixpid 5814
Description: Field of a square Cartesian product. (Contributed by FL, 10-Oct-2009.)
Assertion
Ref Expression
unixpid (𝐴 × 𝐴) = 𝐴

Proof of Theorem unixpid
StepHypRef Expression
1 xpeq1 5263 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴))
2 0xp 5339 . . . 4 (∅ × 𝐴) = ∅
31, 2syl6eq 2820 . . 3 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
4 unieq 4580 . . . . 5 ((𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = ∅)
54unieqd 4582 . . . 4 ((𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = ∅)
6 uni0 4599 . . . . . 6 ∅ = ∅
76unieqi 4581 . . . . 5 ∅ =
87, 6eqtri 2792 . . . 4 ∅ = ∅
9 eqtr 2789 . . . . 5 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = ∅) → (𝐴 × 𝐴) = ∅)
10 eqtr 2789 . . . . . . 7 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = 𝐴) → (𝐴 × 𝐴) = 𝐴)
1110expcom 398 . . . . . 6 (∅ = 𝐴 → ( (𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = 𝐴))
1211eqcoms 2778 . . . . 5 (𝐴 = ∅ → ( (𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = 𝐴))
139, 12syl5com 31 . . . 4 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = ∅) → (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴))
145, 8, 13sylancl 566 . . 3 ((𝐴 × 𝐴) = ∅ → (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴))
153, 14mpcom 38 . 2 (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴)
16 df-ne 2943 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
17 xpnz 5694 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅) ↔ (𝐴 × 𝐴) ≠ ∅)
18 unixp 5812 . . . . 5 ((𝐴 × 𝐴) ≠ ∅ → (𝐴 × 𝐴) = (𝐴𝐴))
19 unidm 3905 . . . . 5 (𝐴𝐴) = 𝐴
2018, 19syl6eq 2820 . . . 4 ((𝐴 × 𝐴) ≠ ∅ → (𝐴 × 𝐴) = 𝐴)
2117, 20sylbi 207 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐴) = 𝐴)
2216, 16, 21sylancbr 580 . 2 𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴)
2315, 22pm2.61i 176 1 (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  wne 2942  cun 3719  c0 4061   cuni 4572   × cxp 5247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-xp 5255  df-rel 5256  df-cnv 5257  df-dm 5259  df-rn 5260
This theorem is referenced by:  psss  17421
  Copyright terms: Public domain W3C validator