Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwun Structured version   Visualization version   GIF version

Theorem uniwun 9754
 Description: Every set is contained in a weak universe. This is the analogue of grothtsk 9849 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 9849. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
uniwun WUni = V

Proof of Theorem uniwun
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3345 . 2 ( WUni = V ↔ ∀𝑥 𝑥 WUni)
2 snex 5057 . . . 4 {𝑥} ∈ V
3 wunex 9753 . . . 4 ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
42, 3ax-mp 5 . . 3 𝑢 ∈ WUni {𝑥} ⊆ 𝑢
5 eluni2 4592 . . . 4 (𝑥 WUni ↔ ∃𝑢 ∈ WUni 𝑥𝑢)
6 vex 3343 . . . . . 6 𝑥 ∈ V
76snss 4460 . . . . 5 (𝑥𝑢 ↔ {𝑥} ⊆ 𝑢)
87rexbii 3179 . . . 4 (∃𝑢 ∈ WUni 𝑥𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
95, 8bitri 264 . . 3 (𝑥 WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
104, 9mpbir 221 . 2 𝑥 WUni
111, 10mpgbir 1875 1 WUni = V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1632   ∈ wcel 2139  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715  {csn 4321  ∪ cuni 4588  WUnicwun 9714 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-wun 9716 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator