![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniwf | Structured version Visualization version GIF version |
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
uniwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1tr 8677 | . . . . . . . 8 ⊢ Tr (𝑅1‘suc (rank‘𝐴)) | |
2 | rankidb 8701 | . . . . . . . 8 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
3 | trss 4794 | . . . . . . . 8 ⊢ (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))) | |
4 | 1, 2, 3 | mpsyl 68 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
5 | rankdmr1 8702 | . . . . . . . 8 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
6 | r1sucg 8670 | . . . . . . . 8 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
8 | 4, 7 | syl6sseq 3684 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
9 | sspwuni 4643 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
10 | 8, 9 | sylib 208 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
11 | fvex 6239 | . . . . . 6 ⊢ (𝑅1‘(rank‘𝐴)) ∈ V | |
12 | 11 | elpw2 4858 | . . . . 5 ⊢ (∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
13 | 10, 12 | sylibr 224 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴))) |
14 | 13, 7 | syl6eleqr 2741 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
15 | r1elwf 8697 | . . 3 ⊢ (∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
17 | pwwf 8708 | . . 3 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
18 | pwuni 4506 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
19 | sswf 8709 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
20 | 18, 19 | mpan2 707 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
21 | 17, 20 | sylbi 207 | . 2 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
22 | 16, 21 | impbii 199 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 Tr wtr 4785 dom cdm 5143 “ cima 5146 Oncon0 5761 suc csuc 5763 ‘cfv 5926 𝑅1cr1 8663 rankcrnk 8664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-r1 8665 df-rank 8666 |
This theorem is referenced by: rankuni2b 8754 r1limwun 9596 wfgru 9676 |
Copyright terms: Public domain | W3C validator |