Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwf Structured version   Visualization version   GIF version

Theorem uniwf 8720
 Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
uniwf (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem uniwf
StepHypRef Expression
1 r1tr 8677 . . . . . . . 8 Tr (𝑅1‘suc (rank‘𝐴))
2 rankidb 8701 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
3 trss 4794 . . . . . . . 8 (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))))
41, 2, 3mpsyl 68 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
5 rankdmr1 8702 . . . . . . . 8 (rank‘𝐴) ∈ dom 𝑅1
6 r1sucg 8670 . . . . . . . 8 ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
75, 6ax-mp 5 . . . . . . 7 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
84, 7syl6sseq 3684 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
9 sspwuni 4643 . . . . . 6 (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
108, 9sylib 208 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
11 fvex 6239 . . . . . 6 (𝑅1‘(rank‘𝐴)) ∈ V
1211elpw2 4858 . . . . 5 ( 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1310, 12sylibr 224 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
1413, 7syl6eleqr 2741 . . 3 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
15 r1elwf 8697 . . 3 ( 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
1614, 15syl 17 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
17 pwwf 8708 . . 3 ( 𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
18 pwuni 4506 . . . 4 𝐴 ⊆ 𝒫 𝐴
19 sswf 8709 . . . 4 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 (𝑅1 “ On))
2018, 19mpan2 707 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2117, 20sylbi 207 . 2 ( 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2216, 21impbii 199 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1523   ∈ wcel 2030   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468  Tr wtr 4785  dom cdm 5143   “ cima 5146  Oncon0 5761  suc csuc 5763  ‘cfv 5926  𝑅1cr1 8663  rankcrnk 8664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665  df-rank 8666 This theorem is referenced by:  rankuni2b  8754  r1limwun  9596  wfgru  9676
 Copyright terms: Public domain W3C validator