![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > univ | Structured version Visualization version GIF version |
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
univ | ⊢ ∪ V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwv 4541 | . . 3 ⊢ 𝒫 V = V | |
2 | 1 | unieqi 4553 | . 2 ⊢ ∪ 𝒫 V = ∪ V |
3 | unipw 5023 | . 2 ⊢ ∪ 𝒫 V = V | |
4 | 2, 3 | eqtr3i 2748 | 1 ⊢ ∪ V = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 Vcvv 3304 𝒫 cpw 4266 ∪ cuni 4544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rex 3020 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-pw 4268 df-sn 4286 df-pr 4288 df-uni 4545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |