![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Inference form of uniss 4610. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | uniss 4610 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3715 ∪ cuni 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-uni 4589 |
This theorem is referenced by: unidif 4623 unixpss 5390 riotassuni 6811 unifpw 8434 fiuni 8499 rankuni 8899 fin23lem29 9355 fin23lem30 9356 fin1a2lem12 9425 prdsds 16326 psss 17415 tgval2 20962 eltg4i 20966 ntrss2 21063 isopn3 21072 mretopd 21098 ordtbas 21198 cmpcov2 21395 tgcmp 21406 comppfsc 21537 alexsublem 22049 alexsubALTlem3 22054 alexsubALTlem4 22055 cldsubg 22115 bndth 22958 uniioombllem4 23554 uniioombllem5 23555 omssubadd 30671 cvmscld 31562 fnessref 32658 mblfinlem3 33761 mblfinlem4 33762 ismblfin 33763 mbfresfi 33769 cover2 33821 salexct 41055 salgencntex 41064 |
Copyright terms: Public domain | W3C validator |