![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissd | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 4566. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 4566 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3680 ∪ cuni 4544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-in 3687 df-ss 3694 df-uni 4545 |
This theorem is referenced by: dffv2 6385 onfununi 7558 fiuni 8450 dfac2a 9065 incexc 14689 incexc2 14690 isacs1i 16440 isacs3lem 17288 acsmapd 17300 acsmap2d 17301 dprdres 18548 dprd2da 18562 eltg3i 20888 unitg 20894 tgss 20895 tgcmp 21327 cmpfi 21334 alexsubALTlem4 21976 ptcmplem3 21980 ustbas2 22151 uniioombllem3 23474 shsupunss 28435 locfinref 30138 cmpcref 30147 dya2iocucvr 30576 omssubadd 30592 carsggect 30610 cvmscld 31483 fnemeet1 32588 fnejoin1 32590 onsucsuccmpi 32669 heibor1 33841 heiborlem10 33851 hbt 38119 caragenuni 41148 caragendifcl 41151 cnfsmf 41372 smfsssmf 41375 smfpimbor1lem2 41429 setrecsss 42874 |
Copyright terms: Public domain | W3C validator |