![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissb | Structured version Visualization version GIF version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb | ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4471 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | imbi1i 338 | . . . . 5 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
3 | 19.23v 1911 | . . . . 5 ⊢ (∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4i 267 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
5 | 4 | albii 1787 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
6 | alcom 2077 | . . . 4 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
7 | 19.21v 1908 | . . . . . 6 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
8 | impexp 461 | . . . . . . . 8 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) | |
9 | bi2.04 375 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
10 | 8, 9 | bitri 264 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
11 | 10 | albii 1787 | . . . . . 6 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
12 | dfss2 3624 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) | |
13 | 12 | imbi2i 325 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
14 | 7, 11, 13 | 3bitr4i 292 | . . . . 5 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
15 | 14 | albii 1787 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
16 | 6, 15 | bitri 264 | . . 3 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
17 | 5, 16 | bitri 264 | . 2 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
18 | dfss2 3624 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵)) | |
19 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) | |
20 | 17, 18, 19 | 3bitr4i 292 | 1 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∃wex 1744 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-in 3614 df-ss 3621 df-uni 4469 |
This theorem is referenced by: uniss2 4502 ssunieq 4504 sspwuni 4643 pwssb 4644 ordunisssuc 5868 sorpssuni 6988 bm2.5ii 7048 sbthlem1 8111 ordunifi 8251 isfinite2 8259 cflim2 9123 fin23lem16 9195 fin23lem29 9201 fin1a2lem11 9270 fin1a2lem13 9272 itunitc 9281 zorng 9364 wuncval2 9607 suplem1pr 9912 suplem2pr 9913 mrcuni 16328 ipodrsfi 17210 mrelatlub 17233 subgint 17665 efgval 18176 toponmre 20945 neips 20965 neiuni 20974 alexsubALTlem2 21899 alexsubALTlem3 21900 tgpconncompeqg 21962 unidmvol 23355 tglnunirn 25488 uniinn0 29492 locfinreflem 30035 sxbrsigalem0 30461 dya2iocuni 30473 dya2iocucvr 30474 carsguni 30498 topjoin 32485 fnejoin1 32488 fnejoin2 32489 ovoliunnfl 33581 voliunnfl 33583 volsupnfl 33584 intidl 33958 unichnidl 33960 salexct 40870 setrec1lem2 42760 setrec2fun 42764 |
Copyright terms: Public domain | W3C validator |