MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss2 Structured version   Visualization version   GIF version

Theorem uniss2 4502
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 4597 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 4491 . . . . 5 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
21expcom 450 . . . 4 (𝑦𝐵 → (𝑥𝑦𝑥 𝐵))
32rexlimiv 3056 . . 3 (∃𝑦𝐵 𝑥𝑦𝑥 𝐵)
43ralimi 2981 . 2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴 𝑥 𝐵)
5 unissb 4501 . 2 ( 𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
64, 5sylibr 224 1 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2030  wral 2941  wrex 2942  wss 3607   cuni 4468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-in 3614  df-ss 3621  df-uni 4469
This theorem is referenced by:  unidif  4503  coflim  9121
  Copyright terms: Public domain W3C validator