![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3703 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 590 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1959 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4547 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4547 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 285 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 3715 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1817 ∈ wcel 2103 ⊆ wss 3680 ∪ cuni 4544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-in 3687 df-ss 3694 df-uni 4545 |
This theorem is referenced by: unissi 4569 unissd 4570 intssuni2 4610 uniintsn 4622 relfld 5774 dffv2 6385 trcl 8717 cflm 9185 coflim 9196 cfslbn 9202 fin23lem41 9287 fin1a2lem12 9346 tskuni 9718 prdsval 16238 prdsbas 16240 prdsplusg 16241 prdsmulr 16242 prdsvsca 16243 prdshom 16250 mrcssv 16397 catcfuccl 16881 catcxpccl 16969 mrelatlub 17308 mreclatBAD 17309 dprdres 18548 dmdprdsplit2lem 18565 tgcl 20896 distop 20922 fctop 20931 cctop 20933 neiptoptop 21058 cmpcld 21328 uncmp 21329 cmpfi 21334 comppfsc 21458 kgentopon 21464 txcmplem2 21568 filconn 21809 alexsubALTlem3 21975 alexsubALT 21977 ptcmplem3 21980 dyadmbllem 23488 shsupcl 28427 hsupss 28430 shatomistici 29450 pwuniss 29598 carsggect 30610 carsgclctun 30613 cvmliftlem15 31508 frrlem5c 32013 filnetlem3 32602 icoreunrn 33439 heiborlem1 33842 lssats 34719 lpssat 34720 lssatle 34722 lssat 34723 dicval 36884 pwsal 40955 prsal 40958 intsaluni 40967 |
Copyright terms: Public domain | W3C validator |