MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisngl Structured version   Visualization version   GIF version

Theorem unisngl 21378
Description: Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020.)
Hypothesis
Ref Expression
dissnref.c 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
Assertion
Ref Expression
unisngl 𝑋 = 𝐶
Distinct variable groups:   𝑢,𝐶,𝑥   𝑢,𝑋,𝑥

Proof of Theorem unisngl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dissnref.c . . 3 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
21unieqi 4477 . 2 𝐶 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}
3 simpl 472 . . . . . . . . 9 ((𝑦𝑢𝑢 = {𝑥}) → 𝑦𝑢)
4 simpr 476 . . . . . . . . 9 ((𝑦𝑢𝑢 = {𝑥}) → 𝑢 = {𝑥})
53, 4eleqtrd 2732 . . . . . . . 8 ((𝑦𝑢𝑢 = {𝑥}) → 𝑦 ∈ {𝑥})
65exlimiv 1898 . . . . . . 7 (∃𝑢(𝑦𝑢𝑢 = {𝑥}) → 𝑦 ∈ {𝑥})
7 eqid 2651 . . . . . . . 8 {𝑥} = {𝑥}
8 snex 4938 . . . . . . . . 9 {𝑥} ∈ V
9 eleq2 2719 . . . . . . . . . 10 (𝑢 = {𝑥} → (𝑦𝑢𝑦 ∈ {𝑥}))
10 eqeq1 2655 . . . . . . . . . 10 (𝑢 = {𝑥} → (𝑢 = {𝑥} ↔ {𝑥} = {𝑥}))
119, 10anbi12d 747 . . . . . . . . 9 (𝑢 = {𝑥} → ((𝑦𝑢𝑢 = {𝑥}) ↔ (𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥})))
128, 11spcev 3331 . . . . . . . 8 ((𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}) → ∃𝑢(𝑦𝑢𝑢 = {𝑥}))
137, 12mpan2 707 . . . . . . 7 (𝑦 ∈ {𝑥} → ∃𝑢(𝑦𝑢𝑢 = {𝑥}))
146, 13impbii 199 . . . . . 6 (∃𝑢(𝑦𝑢𝑢 = {𝑥}) ↔ 𝑦 ∈ {𝑥})
15 velsn 4226 . . . . . 6 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
16 equcom 1991 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
1714, 15, 163bitri 286 . . . . 5 (∃𝑢(𝑦𝑢𝑢 = {𝑥}) ↔ 𝑥 = 𝑦)
1817rexbii 3070 . . . 4 (∃𝑥𝑋𝑢(𝑦𝑢𝑢 = {𝑥}) ↔ ∃𝑥𝑋 𝑥 = 𝑦)
19 r19.42v 3121 . . . . . 6 (∃𝑥𝑋 (𝑦𝑢𝑢 = {𝑥}) ↔ (𝑦𝑢 ∧ ∃𝑥𝑋 𝑢 = {𝑥}))
2019exbii 1814 . . . . 5 (∃𝑢𝑥𝑋 (𝑦𝑢𝑢 = {𝑥}) ↔ ∃𝑢(𝑦𝑢 ∧ ∃𝑥𝑋 𝑢 = {𝑥}))
21 rexcom4 3256 . . . . 5 (∃𝑥𝑋𝑢(𝑦𝑢𝑢 = {𝑥}) ↔ ∃𝑢𝑥𝑋 (𝑦𝑢𝑢 = {𝑥}))
22 eluniab 4479 . . . . 5 (𝑦 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ↔ ∃𝑢(𝑦𝑢 ∧ ∃𝑥𝑋 𝑢 = {𝑥}))
2320, 21, 223bitr4ri 293 . . . 4 (𝑦 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ↔ ∃𝑥𝑋𝑢(𝑦𝑢𝑢 = {𝑥}))
24 risset 3091 . . . 4 (𝑦𝑋 ↔ ∃𝑥𝑋 𝑥 = 𝑦)
2518, 23, 243bitr4i 292 . . 3 (𝑦 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ↔ 𝑦𝑋)
2625eqriv 2648 . 2 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} = 𝑋
272, 26eqtr2i 2674 1 𝑋 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wrex 2942  {csn 4210   cuni 4468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-dif 3610  df-un 3612  df-nul 3949  df-sn 4211  df-pr 4213  df-uni 4469
This theorem is referenced by:  dissnref  21379  dissnlocfin  21380
  Copyright terms: Public domain W3C validator