![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisn | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisn | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4223 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 4477 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3, 3 | unipr 4481 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) |
5 | unidm 3789 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
6 | 2, 4, 5 | 3eqtri 2677 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 {csn 4210 {cpr 4212 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 df-un 3612 df-sn 4211 df-pr 4213 df-uni 4469 |
This theorem is referenced by: unisng 4484 uniintsn 4546 unidif0 4868 op1sta 5654 op2nda 5658 opswap 5660 unisuc 5839 uniabio 5899 fvssunirn 6255 opabiotafun 6298 funfv 6304 dffv2 6310 onuninsuci 7082 en1b 8065 tc2 8656 cflim2 9123 fin1a2lem10 9269 fin1a2lem12 9271 incexclem 14612 acsmapd 17225 pmtrprfval 17953 sylow2a 18080 lspuni0 19058 lss0v 19064 zrhval2 19905 indistopon 20853 refun0 21366 1stckgenlem 21404 qtopeu 21567 hmphindis 21648 filconn 21734 ufildr 21782 alexsubALTlem3 21900 ptcmplem2 21904 cnextfres1 21919 icccmplem1 22672 disjabrex 29521 disjabrexf 29522 locfinref 30036 pstmfval 30067 esumval 30236 esumpfinval 30265 esumpfinvalf 30266 prsiga 30322 fiunelcarsg 30506 carsgclctunlem1 30507 carsggect 30508 indispconn 31342 fobigcup 32132 onsucsuccmpi 32567 bj-nuliotaALT 33145 mbfresfi 33586 heiborlem3 33742 prsal 40856 isomenndlem 41065 |
Copyright terms: Public domain | W3C validator |