MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnioo Structured version   Visualization version   GIF version

Theorem unirnioo 12311
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo ℝ = ran (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 12286 . . . 4 (-∞(,)+∞) = ℝ
2 ioof 12309 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6083 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
5 mnfxr 10134 . . . . 5 -∞ ∈ ℝ*
6 pnfxr 10130 . . . . 5 +∞ ∈ ℝ*
7 fnovrn 6851 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
84, 5, 6, 7mp3an 1464 . . . 4 (-∞(,)+∞) ∈ ran (,)
91, 8eqeltrri 2727 . . 3 ℝ ∈ ran (,)
10 elssuni 4499 . . 3 (ℝ ∈ ran (,) → ℝ ⊆ ran (,))
119, 10ax-mp 5 . 2 ℝ ⊆ ran (,)
12 frn 6091 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
132, 12ax-mp 5 . . 3 ran (,) ⊆ 𝒫 ℝ
14 sspwuni 4643 . . 3 (ran (,) ⊆ 𝒫 ℝ ↔ ran (,) ⊆ ℝ)
1513, 14mpbi 220 . 2 ran (,) ⊆ ℝ
1611, 15eqssi 3652 1 ℝ = ran (,)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  wss 3607  𝒫 cpw 4191   cuni 4468   × cxp 5141  ran crn 5144   Fn wfn 5921  wf 5922  (class class class)co 6690  cr 9973  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111  (,)cioo 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ioo 12217
This theorem is referenced by:  pnfnei  21072  mnfnei  21073  uniretop  22613  tgioo  22646  xrtgioo  22656  bndth  22804  relowlssretop  33341  relowlpssretop  33342  mblfinlem3  33578  mblfinlem4  33579  ismblfin  33580
  Copyright terms: Public domain W3C validator