![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unirnffid | Structured version Visualization version GIF version |
Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unirnffid.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
unirnffid.2 | ⊢ (𝜑 → 𝑇 ∈ Fin) |
Ref | Expression |
---|---|
unirnffid | ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnffid.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
2 | ffn 6185 | . . . . 5 ⊢ (𝐹:𝑇⟶Fin → 𝐹 Fn 𝑇) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
4 | unirnffid.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Fin) | |
5 | fnfi 8393 | . . . 4 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ Fin) → 𝐹 ∈ Fin) | |
6 | 3, 4, 5 | syl2anc 565 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Fin) |
7 | rnfi 8404 | . . 3 ⊢ (𝐹 ∈ Fin → ran 𝐹 ∈ Fin) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
9 | frn 6193 | . . 3 ⊢ (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin) | |
10 | 1, 9 | syl 17 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ Fin) |
11 | unifi 8410 | . 2 ⊢ ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ⊆ Fin) → ∪ ran 𝐹 ∈ Fin) | |
12 | 8, 10, 11 | syl2anc 565 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 ⊆ wss 3721 ∪ cuni 4572 ran crn 5250 Fn wfn 6026 ⟶wf 6027 Fincfn 8108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-fin 8112 |
This theorem is referenced by: marypha2 8500 acsinfd 17387 |
Copyright terms: Public domain | W3C validator |