![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unir1 | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
unir1 | ⊢ ∪ (𝑅1 “ On) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setind 8783 | . 2 ⊢ (∀𝑥(𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) → ∪ (𝑅1 “ On) = V) | |
2 | vex 3343 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | r1elss 8842 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝑥 ⊆ ∪ (𝑅1 “ On)) |
4 | 3 | biimpri 218 | . 2 ⊢ (𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
5 | 1, 4 | mpg 1873 | 1 ⊢ ∪ (𝑅1 “ On) = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ∪ cuni 4588 “ cima 5269 Oncon0 5884 𝑅1cr1 8798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-reg 8662 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-r1 8800 |
This theorem is referenced by: jech9.3 8850 rankwflem 8851 rankval 8852 rankr1g 8868 rankid 8869 ssrankr1 8871 rankel 8875 rankval3 8876 rankpw 8879 rankss 8885 ranksn 8890 rankuni2 8891 rankun 8892 rankpr 8893 rankop 8894 r1rankid 8895 rankeq0 8897 rankr1b 8900 dfac12a 9162 hsmex2 9447 grutsk 9836 |
Copyright terms: Public domain | W3C validator |