Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniqsALTV Structured version   Visualization version   GIF version

Theorem uniqsALTV 34444
 Description: The union of a quotient set: a weaker version of uniqs 7959. (Contributed by Peter Mazsa, 20-Jun-2019.)
Assertion
Ref Expression
uniqsALTV ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))

Proof of Theorem uniqsALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecex2 34443 . . . . 5 ((𝑅𝐴) ∈ 𝑉 → (𝑥𝐴 → [𝑥]𝑅 ∈ V))
21ralrimiv 3114 . . . 4 ((𝑅𝐴) ∈ 𝑉 → ∀𝑥𝐴 [𝑥]𝑅 ∈ V)
3 dfiun2g 4686 . . . 4 (∀𝑥𝐴 [𝑥]𝑅 ∈ V → 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
42, 3syl 17 . . 3 ((𝑅𝐴) ∈ 𝑉 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
54eqcomd 2777 . 2 ((𝑅𝐴) ∈ 𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = 𝑥𝐴 [𝑥]𝑅)
6 df-qs 7902 . . 3 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
76unieqi 4583 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
8 df-ec 7898 . . . . 5 [𝑥]𝑅 = (𝑅 “ {𝑥})
98a1i 11 . . . 4 (𝑥𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥}))
109iuneq2i 4673 . . 3 𝑥𝐴 [𝑥]𝑅 = 𝑥𝐴 (𝑅 “ {𝑥})
11 imaiun 6646 . . 3 (𝑅 𝑥𝐴 {𝑥}) = 𝑥𝐴 (𝑅 “ {𝑥})
12 iunid 4709 . . . 4 𝑥𝐴 {𝑥} = 𝐴
1312imaeq2i 5605 . . 3 (𝑅 𝑥𝐴 {𝑥}) = (𝑅𝐴)
1410, 11, 133eqtr2ri 2800 . 2 (𝑅𝐴) = 𝑥𝐴 [𝑥]𝑅
155, 7, 143eqtr4g 2830 1 ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  {cab 2757  ∀wral 3061  ∃wrex 3062  Vcvv 3351  {csn 4316  ∪ cuni 4574  ∪ ciun 4654   ↾ cres 5251   “ cima 5252  [cec 7894   / cqs 7895 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ec 7898  df-qs 7902 This theorem is referenced by:  rnresequniqs  34445
 Copyright terms: Public domain W3C validator