![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniqs2 | Structured version Visualization version GIF version |
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uniqs 7958 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
5 | erdm 7905 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
7 | 6 | imaeq2d 5607 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
8 | 3, 7 | eqtr4d 2807 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
9 | imadmrn 5617 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
10 | 8, 9 | syl6eq 2820 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
11 | errn 7917 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
13 | 10, 12 | eqtrd 2804 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ∪ cuni 4572 dom cdm 5249 ran crn 5250 “ cima 5252 Er wer 7892 / cqs 7894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-er 7895 df-ec 7897 df-qs 7901 |
This theorem is referenced by: qshash 14765 cldsubg 22133 pi1buni 23058 |
Copyright terms: Public domain | W3C validator |