![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unipwrVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of unipwr 39585. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unipwrVD | ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3343 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4353 | . . . 4 ⊢ 𝑥 ∈ {𝑥} |
3 | idn1 39310 | . . . . 5 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
4 | snelpwi 5061 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
5 | 3, 4 | e1a 39372 | . . . 4 ⊢ ( 𝑥 ∈ 𝐴 ▶ {𝑥} ∈ 𝒫 𝐴 ) |
6 | elunii 4593 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
7 | 2, 5, 6 | e01an 39437 | . . 3 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ ∪ 𝒫 𝐴 ) |
8 | 7 | in1 39307 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 8 | ssriv 3748 | 1 ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ⊆ wss 3715 𝒫 cpw 4302 {csn 4321 ∪ cuni 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 df-sn 4322 df-pr 4324 df-uni 4589 df-vd1 39306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |