![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unipw | Structured version Visualization version GIF version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4471 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
2 | elelpwi 4204 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
3 | 2 | exlimiv 1898 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) |
4 | 1, 3 | sylbi 207 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) |
5 | vsnid 4242 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
6 | snelpwi 4942 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
7 | elunii 4473 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
8 | 5, 6, 7 | sylancr 696 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 4, 8 | impbii 199 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 9 | eqriv 2648 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 𝒫 cpw 4191 {csn 4210 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-sn 4211 df-pr 4213 df-uni 4469 |
This theorem is referenced by: univ 4949 pwtr 4951 unixpss 5267 pwexr 7016 unifpw 8310 fiuni 8375 ween 8896 fin23lem41 9212 mremre 16311 submre 16312 isacs1i 16365 eltg4i 20812 distop 20847 distopon 20849 distps 20867 ntrss2 20909 isopn3 20918 discld 20941 mretopd 20944 dishaus 21234 discmp 21249 dissnlocfin 21380 locfindis 21381 txdis 21483 xkopt 21506 xkofvcn 21535 hmphdis 21647 ustbas2 22076 vitali 23427 shsupcl 28325 shsupunss 28333 pwuniss 29496 iundifdifd 29506 iundifdif 29507 dispcmp 30054 mbfmcnt 30458 omssubadd 30490 carsgval 30493 carsggect 30508 coinflipprob 30669 coinflipuniv 30671 fnemeet2 32487 bj-discrmoore 33191 icoreunrn 33337 mapdunirnN 37256 ismrcd1 37578 hbt 38017 pwelg 38182 pwsal 40853 salgenval 40859 salgenn0 40867 salexct 40870 salgencntex 40879 0ome 41064 isomennd 41066 unidmovn 41148 rrnmbl 41149 hspmbl 41164 |
Copyright terms: Public domain | W3C validator |