![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unipreima | Structured version Visualization version GIF version |
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.) |
Ref | Expression |
---|---|
unipreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6079 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | r19.42v 3230 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) | |
3 | 2 | bicomi 214 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥)) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
5 | eluni2 4592 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥) | |
6 | 5 | anbi2i 732 | . . . . . 6 ⊢ ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥)) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝑥))) |
8 | elpreima 6501 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ 𝑥) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) | |
9 | 8 | rexbidv 3190 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 → (∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ 𝑥))) |
10 | 4, 7, 9 | 3bitr4d 300 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → ((𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
11 | elpreima 6501 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ (𝑦 ∈ dom 𝐹 ∧ (𝐹‘𝑦) ∈ ∪ 𝐴))) | |
12 | eliun 4676 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥)) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝑥))) |
14 | 10, 11, 13 | 3bitr4d 300 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (𝑦 ∈ (◡𝐹 “ ∪ 𝐴) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥))) |
15 | 14 | eqrdv 2758 | . 2 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
16 | 1, 15 | sylbi 207 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∪ cuni 4588 ∪ ciun 4672 ◡ccnv 5265 dom cdm 5266 “ cima 5269 Fun wfun 6043 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: imambfm 30654 dstrvprob 30863 |
Copyright terms: Public domain | W3C validator |