![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4588 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 4672 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2783 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 {cab 2744 ∃wrex 3049 ∪ cuni 4586 ∪ ciun 4670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-rex 3054 df-uni 4587 df-iun 4672 |
This theorem is referenced by: iununi 4760 iunpwss 4768 truni 4917 reluni 5395 rnuni 5700 imauni 6665 iunpw 7141 oa0r 7785 om1r 7790 oeworde 7840 unifi 8418 infssuni 8420 cfslb2n 9280 ituniiun 9434 unidom 9555 unictb 9587 gruuni 9812 gruun 9818 hashuni 14755 tgidm 20984 unicld 21050 clsval2 21054 mretopd 21096 tgrest 21163 cmpsublem 21402 cmpsub 21403 tgcmp 21404 hauscmplem 21409 cmpfi 21411 unconn 21432 conncompconn 21435 comppfsc 21535 kgentopon 21541 txbasval 21609 txtube 21643 txcmplem1 21644 txcmplem2 21645 xkococnlem 21662 alexsublem 22047 alexsubALT 22054 opnmblALT 23569 limcun 23856 uniin1 29672 uniin2 29673 disjuniel 29715 hashunif 29869 dmvlsiga 30499 measinblem 30590 volmeas 30601 carsggect 30687 omsmeas 30692 cvmscld 31560 istotbnd3 33881 sstotbnd 33885 heiborlem3 33923 heibor 33931 fiunicl 39733 founiiun 39857 founiiun0 39874 psmeasurelem 41188 |
Copyright terms: Public domain | W3C validator |