Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem4 Structured version   Visualization version   GIF version

Theorem uniioombllem4 23400
 Description: Lemma for uniioombl 23403. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem4 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem4
StepHypRef Expression
1 inss1 3866 . . . 4 (𝐾𝐴) ⊆ 𝐾
21a1i 11 . . 3 (𝜑 → (𝐾𝐴) ⊆ 𝐾)
3 uniioombl.k . . . . . 6 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
4 imassrn 5512 . . . . . . 7 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
54unissi 4493 . . . . . 6 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
63, 5eqsstri 3668 . . . . 5 𝐾 ran ((,) ∘ 𝐺)
76a1i 11 . . . 4 (𝜑𝐾 ran ((,) ∘ 𝐺))
8 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
98uniiccdif 23392 . . . . . 6 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
109simpld 474 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
11 ovolficcss 23284 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
128, 11syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
1310, 12sstrd 3646 . . . 4 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
147, 13sstrd 3646 . . 3 (𝜑𝐾 ⊆ ℝ)
15 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
16 uniioombl.2 . . . . . 6 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
17 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
18 uniioombl.a . . . . . 6 𝐴 = ran ((,) ∘ 𝐹)
19 uniioombl.e . . . . . 6 (𝜑 → (vol*‘𝐸) ∈ ℝ)
20 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
21 uniioombl.s . . . . . 6 (𝜑𝐸 ran ((,) ∘ 𝐺))
22 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
23 uniioombl.v . . . . . 6 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2415, 16, 17, 18, 19, 20, 8, 21, 22, 23uniioombllem1 23395 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
25 ssid 3657 . . . . . 6 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
2622ovollb 23293 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
278, 25, 26sylancl 695 . . . . 5 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
28 ovollecl 23297 . . . . 5 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
2913, 24, 27, 28syl3anc 1366 . . . 4 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
30 ovolsscl 23300 . . . 4 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
317, 13, 29, 30syl3anc 1366 . . 3 (𝜑 → (vol*‘𝐾) ∈ ℝ)
32 ovolsscl 23300 . . 3 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
332, 14, 31, 32syl3anc 1366 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
34 inss1 3866 . . . . 5 (𝐾𝐿) ⊆ 𝐾
3534a1i 11 . . . 4 (𝜑 → (𝐾𝐿) ⊆ 𝐾)
36 ovolsscl 23300 . . . 4 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
3735, 14, 31, 36syl3anc 1366 . . 3 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
38 ssun2 3810 . . . . . 6 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
39 nnuz 11761 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
40 uniioombl.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
4140peano2nnd 11075 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 + 1) ∈ ℕ)
4241, 39syl6eleq 2740 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
43 uzsplit 12450 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4442, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4539, 44syl5eq 2697 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4640nncnd 11074 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
47 ax-1cn 10032 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
48 pncan 10325 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4946, 47, 48sylancl 695 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
5049oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
5150uneq1d 3799 . . . . . . . . . . . . 13 (𝜑 → ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
5245, 51eqtrd 2685 . . . . . . . . . . . 12 (𝜑 → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
5352iuneq1d 4577 . . . . . . . . . . 11 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)))
54 iunxun 4637 . . . . . . . . . . 11 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
5553, 54syl6eq 2701 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
56 ioof 12309 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
57 inss2 3867 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
58 rexpssxrxp 10122 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5957, 58sstri 3645 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
60 fss 6094 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
6115, 59, 60sylancl 695 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
62 fco 6096 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
6356, 61, 62sylancr 696 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
64 ffn 6083 . . . . . . . . . . . . 13 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
65 fniunfv 6545 . . . . . . . . . . . . 13 (((,) ∘ 𝐹) Fn ℕ → 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
6663, 64, 653syl 18 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
67 fvco3 6314 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6815, 67sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6968iuneq2dv 4574 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
7066, 69eqtr3d 2687 . . . . . . . . . . 11 (𝜑 ran ((,) ∘ 𝐹) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
7118, 70syl5eq 2697 . . . . . . . . . 10 (𝜑𝐴 = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
72 uniioombl.l . . . . . . . . . . . 12 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
73 ffun 6086 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
74 funiunfv 6546 . . . . . . . . . . . . . 14 (Fun ((,) ∘ 𝐹) → 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
7563, 73, 743syl 18 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
76 elfznn 12408 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
7715, 76, 67syl2an 493 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
7877iuneq2dv 4574 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7975, 78eqtr3d 2687 . . . . . . . . . . . 12 (𝜑 (((,) ∘ 𝐹) “ (1...𝑁)) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
8072, 79syl5eq 2697 . . . . . . . . . . 11 (𝜑𝐿 = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
8180uneq1d 3799 . . . . . . . . . 10 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8255, 71, 813eqtr4d 2695 . . . . . . . . 9 (𝜑𝐴 = (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8382ineq2d 3847 . . . . . . . 8 (𝜑 → (𝐾𝐴) = (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
84 indi 3906 . . . . . . . 8 (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8583, 84syl6eq 2701 . . . . . . 7 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
86 fss 6094 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
878, 59, 86sylancl 695 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
88 fco 6096 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
8956, 87, 88sylancr 696 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
90 ffun 6086 . . . . . . . . . . . . 13 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
91 funiunfv 6546 . . . . . . . . . . . . 13 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
9289, 90, 913syl 18 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
93 elfznn 12408 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
94 fvco3 6314 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
958, 93, 94syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
9695iuneq2dv 4574 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9792, 96eqtr3d 2687 . . . . . . . . . . 11 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
983, 97syl5eq 2697 . . . . . . . . . 10 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9998ineq2d 3847 . . . . . . . . 9 (𝜑 → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
100 incom 3838 . . . . . . . . 9 (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾)
101 iunin2 4616 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
102 incom 3838 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
103102a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘(𝑁 + 1)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
104103iuneq2i 4571 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
105 incom 3838 . . . . . . . . . . . . 13 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
106101, 104, 1053eqtr4ri 2684 . . . . . . . . . . . 12 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
107106a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
108107iuneq2i 4571 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
109 iunin2 4616 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
110108, 109eqtr3i 2675 . . . . . . . . 9 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
11199, 100, 1103eqtr4g 2710 . . . . . . . 8 (𝜑 → (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
112111uneq2d 3800 . . . . . . 7 (𝜑 → ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11385, 112eqtrd 2685 . . . . . 6 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11438, 113syl5sseqr 3687 . . . . 5 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ (𝐾𝐴))
115114, 1syl6ss 3648 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
116 ovolsscl 23300 . . . 4 (( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
117115, 14, 31, 116syl3anc 1366 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
11837, 117readdcld 10107 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ∈ ℝ)
11920rpred 11910 . . 3 (𝜑𝐶 ∈ ℝ)
12037, 119readdcld 10107 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
121113fveq2d 6233 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) = (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
12235, 14sstrd 3646 . . . 4 (𝜑 → (𝐾𝐿) ⊆ ℝ)
123115, 14sstrd 3646 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
124 ovolun 23313 . . . 4 ((((𝐾𝐿) ⊆ ℝ ∧ (vol*‘(𝐾𝐿)) ∈ ℝ) ∧ ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
125122, 37, 123, 117, 124syl22anc 1367 . . 3 (𝜑 → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
126121, 125eqbrtrd 4707 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
127 fzfid 12812 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
128 iunss 4593 . . . . . . . 8 ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾 ↔ ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
129115, 128sylib 208 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
130129r19.21bi 2961 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
13114adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐾 ⊆ ℝ)
13231adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘𝐾) ∈ ℝ)
133 ovolsscl 23300 . . . . . 6 (( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
134130, 131, 132, 133syl3anc 1366 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
135127, 134fsumrecl 14509 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
136130, 131sstrd 3646 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
137136, 134jca 553 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
138137ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
139 ovolfiniun 23315 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
140127, 138, 139syl2anc 694 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
141 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
142119, 141nndivred 11107 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℝ)
143142adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶 / 𝑀) ∈ ℝ)
14480ineq2d 3847 . . . . . . . . . . . . 13 (𝜑 → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
145144adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
146102a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
147146iuneq2i 4571 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
148 iunin2 4616 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
149147, 148eqtri 2673 . . . . . . . . . . . 12 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
150145, 149syl6eqr 2703 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
151 fzfid 12812 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (1...𝑁) ∈ Fin)
152 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
15315, 76, 152syl2an 493 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
15457, 153sseldi 3634 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ (ℝ × ℝ))
155 1st2nd2 7249 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ (ℝ × ℝ) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
156154, 155syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
157156fveq2d 6233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩))
158 df-ov 6693 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
159157, 158syl6eqr 2703 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))))
160 ioombl 23379 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) ∈ dom vol
161159, 160syl6eqel 2738 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
162161adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
163 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
1648, 93, 163syl2an 493 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
16557, 164sseldi 3634 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
166 1st2nd2 7249 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
167165, 166syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
168167fveq2d 6233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
169 df-ov 6693 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
170168, 169syl6eqr 2703 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
171 ioombl 23379 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ∈ dom vol
172170, 171syl6eqel 2738 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
173172adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
174 inmbl 23356 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑖)) ∈ dom vol ∧ ((,)‘(𝐺𝑗)) ∈ dom vol) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
175162, 173, 174syl2anc 694 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
176175ralrimiva 2995 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
177 finiunmbl 23358 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
178151, 176, 177syl2anc 694 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
179150, 178eqeltrd 2730 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol)
180 inss2 3867 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ 𝐴
18115uniiccdif 23392 . . . . . . . . . . . . . . 15 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
182181simpld 474 . . . . . . . . . . . . . 14 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
183 ovolficcss 23284 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
18415, 183syl 17 . . . . . . . . . . . . . 14 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
185182, 184sstrd 3646 . . . . . . . . . . . . 13 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
18618, 185syl5eqss 3682 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
187186adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐴 ⊆ ℝ)
188180, 187syl5ss 3647 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ)
189 inss1 3866 . . . . . . . . . . . 12 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗))
190189a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗)))
191 ioossre 12273 . . . . . . . . . . . 12 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
192170, 191syl6eqss 3688 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
193170fveq2d 6233 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
194 ovolfcl 23281 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
1958, 93, 194syl2an 493 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
196 ovolioo 23382 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
197195, 196syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
198193, 197eqtrd 2685 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
199195simp2d 1094 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
200195simp1d 1093 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
201199, 200resubcld 10496 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
202198, 201eqeltrd 2730 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
203 ovolsscl 23300 . . . . . . . . . . 11 (((((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
204190, 192, 202, 203syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
205 mblsplit 23346 . . . . . . . . . 10 (((((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol ∧ (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ ∧ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
206179, 188, 204, 205syl3anc 1366 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
207 imassrn 5512 . . . . . . . . . . . . . . 15 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
208207unissi 4493 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
209208, 72, 183sstr4i 3677 . . . . . . . . . . . . 13 𝐿𝐴
210 sslin 3872 . . . . . . . . . . . . 13 (𝐿𝐴 → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
211209, 210mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
212 sseqin2 3850 . . . . . . . . . . . 12 ((((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴) ↔ ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
213211, 212sylib 208 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
214213fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
215 indifdir 3916 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗))))
216 incom 3838 . . . . . . . . . . . . . 14 (𝐴 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐴)
217 incom 3838 . . . . . . . . . . . . . 14 (𝐿 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐿)
218216, 217difeq12i 3759 . . . . . . . . . . . . 13 ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗)))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
219215, 218eqtri 2673 . . . . . . . . . . . 12 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
22082eqcomd 2657 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴)
22180ineq1d 3846 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
222 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑖 → (𝐹𝑥) = (𝐹𝑖))
223222fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑖 → ((,)‘(𝐹𝑥)) = ((,)‘(𝐹𝑖)))
224223cbvdisjv 4663 . . . . . . . . . . . . . . . . . . . 20 (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) ↔ Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
22516, 224sylib 208 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
22676ssriv 3640 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
227226a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑁) ⊆ ℕ)
228 uzss 11746 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
22942, 228syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
230229, 39syl6sseqr 3685 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ)
231 uzdisj 12451 . . . . . . . . . . . . . . . . . . . 20 ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
23250ineq1d 3846 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))))
233231, 232syl5reqr 2700 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
234 disjiun 4672 . . . . . . . . . . . . . . . . . . 19 ((Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) ∧ ((1...𝑁) ⊆ ℕ ∧ (ℤ‘(𝑁 + 1)) ⊆ ℕ ∧ ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)) → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
235225, 227, 230, 233, 234syl13anc 1368 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
236221, 235eqtrd 2685 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
237 uneqdifeq 4090 . . . . . . . . . . . . . . . . 17 ((𝐿𝐴 ∧ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅) → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
238209, 236, 237sylancr 696 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
239220, 238mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
240239adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
241240ineq2d 3847 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
242 incom 3838 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿))
243104, 101eqtri 2673 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
244241, 242, 2433eqtr4g 2710 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
245219, 244syl5eqr 2699 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
246245fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
247214, 246oveq12d 6708 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
248206, 247eqtrd 2685 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
249204, 143resubcld 10496 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ∈ ℝ)
250 inss2 3867 . . . . . . . . . . . . . 14 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
251250a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)))
252192adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
253202adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
254 ovolsscl 23300 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
255251, 252, 253, 254syl3anc 1366 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
256151, 255fsumrecl 14509 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
257 uniioombl.n2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
258257r19.21bi 2961 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
259256, 204, 143absdifltd 14216 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ((abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀) ↔ (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀)))))
260258, 259mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀))))
261260simpld 474 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
262249, 256, 261ltled 10223 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
263150fveq2d 6233 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
264 mblvol 23344 . . . . . . . . . . . . . . . . 17 ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
265175, 264syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
266265, 255eqeltrd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
267175, 266jca 553 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
268267ralrimiva 2995 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
269 inss1 3866 . . . . . . . . . . . . . . . 16 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
270269rgenw 2953 . . . . . . . . . . . . . . 15 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
271225adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
272 disjss2 4655 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖)) → (Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
273270, 271, 272mpsyl 68 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
274 disjss1 4658 . . . . . . . . . . . . . 14 ((1...𝑁) ⊆ ℕ → (Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
275226, 273, 274mpsyl 68 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
276 volfiniun 23361 . . . . . . . . . . . . 13 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ) ∧ Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
277151, 268, 275, 276syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
278 mblvol 23344 . . . . . . . . . . . . 13 ( 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
279178, 278syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
280265sumeq2dv 14477 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
281277, 279, 2803eqtr3d 2693 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
282263, 281eqtrd 2685 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
283262, 282breqtrrd 4713 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
284282, 256eqeltrd 2730 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ∈ ℝ)
285204, 143, 284lesubaddd 10662 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ↔ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
286283, 285mpbid 222 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
287248, 286eqbrtrrd 4709 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
288134, 143, 284leadd2d 10660 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀) ↔ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
289287, 288mpbird 247 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀))
290127, 134, 143, 289fsumle 14575 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀))
291142recnd 10106 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℂ)
292 fsumconst 14566 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (𝐶 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((#‘(1...𝑀)) · (𝐶 / 𝑀)))
293127, 291, 292syl2anc 694 . . . . . 6 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((#‘(1...𝑀)) · (𝐶 / 𝑀)))
294 nnnn0 11337 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
295 hashfz1 13174 . . . . . . . 8 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
296141, 294, 2953syl 18 . . . . . . 7 (𝜑 → (#‘(1...𝑀)) = 𝑀)
297296oveq1d 6705 . . . . . 6 (𝜑 → ((#‘(1...𝑀)) · (𝐶 / 𝑀)) = (𝑀 · (𝐶 / 𝑀)))
298119recnd 10106 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
299141nncnd 11074 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
300141nnne0d 11103 . . . . . . 7 (𝜑𝑀 ≠ 0)
301298, 299, 300divcan2d 10841 . . . . . 6 (𝜑 → (𝑀 · (𝐶 / 𝑀)) = 𝐶)
302293, 297, 3013eqtrd 2689 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = 𝐶)
303290, 302breqtrd 4711 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
304117, 135, 119, 140, 303letrd 10232 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
305117, 119, 37, 304leadd2dd 10680 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
30633, 118, 120, 126, 305letrd 10232 1 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  ⟨cop 4216  ∪ cuni 4468  ∪ ciun 4552  Disj wdisj 4652   class class class wbr 4685   × cxp 5141  dom cdm 5143  ran crn 5144   “ cima 5146   ∘ ccom 5147  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Fincfn 7997  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  ℕ0cn0 11330  ℤ≥cuz 11725  ℝ+crp 11870  (,)cioo 12213  [,]cicc 12216  ...cfz 12364  seqcseq 12841  #chash 13157  abscabs 14018  Σcsu 14460  vol*covol 23277  volcvol 23278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280 This theorem is referenced by:  uniioombllem5  23401
 Copyright terms: Public domain W3C validator