MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombl Structured version   Visualization version   GIF version

Theorem uniioombl 23403
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 23367.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioombl (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioombl
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12309 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 3867 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 10122 . . . . . . 7 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3645 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6094 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 695 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6096 . . . . 5 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 696 . . . 4 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
10 frn 6091 . . . 4 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
119, 10syl 17 . . 3 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
12 sspwuni 4643 . . 3 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1311, 12sylib 208 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
14 elpwi 4201 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1514ad2antrl 764 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → 𝑧 ⊆ ℝ)
1615adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 𝑧 ⊆ ℝ)
17 simprr 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
1817adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (vol*‘𝑧) ∈ ℝ)
19 rphalfcl 11896 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
2019rphalfcld 11922 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
2120adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
22 eqid 2651 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
2322ovolgelb 23294 . . . . . . . . 9 ((𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
2416, 18, 21, 23syl3anc 1366 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
252ad3antrrr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
26 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
2726ad3antrrr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
28 uniioombl.3 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
29 eqid 2651 . . . . . . . . 9 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐹)
3018adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (vol*‘𝑧) ∈ ℝ)
3119adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
3231adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (𝑟 / 2) ∈ ℝ+)
3332rphalfcld 11922 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((𝑟 / 2) / 2) ∈ ℝ+)
34 elmapi 7921 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3534ad2antrl 764 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
36 simprrl 821 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑧 ran ((,) ∘ 𝑓))
37 simprrr 822 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2)))
3825, 27, 28, 29, 30, 33, 35, 36, 22, 37uniioombllem6 23402 . . . . . . . 8 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
3924, 38rexlimddv 3064 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
40 rpcn 11879 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
4140adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
42 2cnd 11131 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ∈ ℂ)
43 2ne0 11151 . . . . . . . . . . . . 13 2 ≠ 0
4443a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ≠ 0)
4541, 42, 42, 44, 44divdiv1d 10870 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / (2 · 2)))
46 2t2e4 11215 . . . . . . . . . . . 12 (2 · 2) = 4
4746oveq2i 6701 . . . . . . . . . . 11 (𝑟 / (2 · 2)) = (𝑟 / 4)
4845, 47syl6eq 2701 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / 4))
4948oveq2d 6706 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = (4 · (𝑟 / 4)))
50 4cn 11136 . . . . . . . . . . 11 4 ∈ ℂ
5150a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ∈ ℂ)
52 4ne0 11155 . . . . . . . . . . 11 4 ≠ 0
5352a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ≠ 0)
5441, 51, 53divcan2d 10841 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · (𝑟 / 4)) = 𝑟)
5549, 54eqtrd 2685 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = 𝑟)
5655oveq2d 6706 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))) = ((vol*‘𝑧) + 𝑟))
5739, 56breqtrd 4711 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
5857ralrimiva 2995 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
59 inss1 3866 . . . . . . . . 9 (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧
6059a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
61 ovolsscl 23300 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6260, 15, 17, 61syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
63 difssd 3771 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
64 ovolsscl 23300 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6563, 15, 17, 64syl3anc 1366 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6662, 65readdcld 10107 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ)
67 alrple 12075 . . . . . 6 ((((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6866, 17, 67syl2anc 694 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6958, 68mpbird 247 . . . 4 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))
7069expr 642 . . 3 ((𝜑𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
7170ralrimiva 2995 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
72 ismbl2 23341 . 2 ( ran ((,) ∘ 𝐹) ∈ dom vol ↔ ( ran ((,) ∘ 𝐹) ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))))
7313, 71, 72sylanbrc 699 1 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cdif 3604  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468  Disj wdisj 4652   class class class wbr 4685   × cxp 5141  dom cdm 5143  ran crn 5144  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  4c4 11110  +crp 11870  (,)cioo 12213  seqcseq 12841  abscabs 14018  vol*covol 23277  volcvol 23278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280
This theorem is referenced by:  uniiccmbl  23404
  Copyright terms: Public domain W3C validator