Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniinqs Structured version   Visualization version   GIF version

Theorem uniinqs 7994
 Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4609. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.)
Hypothesis
Ref Expression
uniinqs.1 𝑅 Er 𝑋
Assertion
Ref Expression
uniinqs ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) = ( 𝐵 𝐶))

Proof of Theorem uniinqs
Dummy variables 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniin 4609 . . 3 (𝐵𝐶) ⊆ ( 𝐵 𝐶)
21a1i 11 . 2 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) ⊆ ( 𝐵 𝐶))
3 eluni2 4592 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
4 eluni2 4592 . . . . . 6 (𝑥 𝐶 ↔ ∃𝑐𝐶 𝑥𝑐)
53, 4anbi12i 735 . . . . 5 ((𝑥 𝐵𝑥 𝐶) ↔ (∃𝑏𝐵 𝑥𝑏 ∧ ∃𝑐𝐶 𝑥𝑐))
6 elin 3939 . . . . 5 (𝑥 ∈ ( 𝐵 𝐶) ↔ (𝑥 𝐵𝑥 𝐶))
7 reeanv 3245 . . . . 5 (∃𝑏𝐵𝑐𝐶 (𝑥𝑏𝑥𝑐) ↔ (∃𝑏𝐵 𝑥𝑏 ∧ ∃𝑐𝐶 𝑥𝑐))
85, 6, 73bitr4i 292 . . . 4 (𝑥 ∈ ( 𝐵 𝐶) ↔ ∃𝑏𝐵𝑐𝐶 (𝑥𝑏𝑥𝑐))
9 simp3l 1244 . . . . . . 7 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑥𝑏)
10 simp2l 1242 . . . . . . . 8 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏𝐵)
11 inelcm 4176 . . . . . . . . . . 11 ((𝑥𝑏𝑥𝑐) → (𝑏𝑐) ≠ ∅)
12113ad2ant3 1130 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → (𝑏𝑐) ≠ ∅)
13 uniinqs.1 . . . . . . . . . . . . . 14 𝑅 Er 𝑋
1413a1i 11 . . . . . . . . . . . . 13 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑅 Er 𝑋)
15 simp1l 1240 . . . . . . . . . . . . . 14 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝐵 ⊆ (𝐴 / 𝑅))
1615, 10sseldd 3745 . . . . . . . . . . . . 13 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏 ∈ (𝐴 / 𝑅))
17 simp1r 1241 . . . . . . . . . . . . . 14 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝐶 ⊆ (𝐴 / 𝑅))
18 simp2r 1243 . . . . . . . . . . . . . 14 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑐𝐶)
1917, 18sseldd 3745 . . . . . . . . . . . . 13 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑐 ∈ (𝐴 / 𝑅))
2014, 16, 19qsdisj 7991 . . . . . . . . . . . 12 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → (𝑏 = 𝑐 ∨ (𝑏𝑐) = ∅))
2120ord 391 . . . . . . . . . . 11 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → (¬ 𝑏 = 𝑐 → (𝑏𝑐) = ∅))
2221necon1ad 2949 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → ((𝑏𝑐) ≠ ∅ → 𝑏 = 𝑐))
2312, 22mpd 15 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏 = 𝑐)
2423, 18eqeltrd 2839 . . . . . . . 8 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏𝐶)
2510, 24elind 3941 . . . . . . 7 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏 ∈ (𝐵𝐶))
26 elunii 4593 . . . . . . 7 ((𝑥𝑏𝑏 ∈ (𝐵𝐶)) → 𝑥 (𝐵𝐶))
279, 25, 26syl2anc 696 . . . . . 6 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑥 (𝐵𝐶))
28273expia 1115 . . . . 5 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶)) → ((𝑥𝑏𝑥𝑐) → 𝑥 (𝐵𝐶)))
2928rexlimdvva 3176 . . . 4 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (∃𝑏𝐵𝑐𝐶 (𝑥𝑏𝑥𝑐) → 𝑥 (𝐵𝐶)))
308, 29syl5bi 232 . . 3 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝑥 ∈ ( 𝐵 𝐶) → 𝑥 (𝐵𝐶)))
3130ssrdv 3750 . 2 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → ( 𝐵 𝐶) ⊆ (𝐵𝐶))
322, 31eqssd 3761 1 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) = ( 𝐵 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  ∪ cuni 4588   Er wer 7908   / cqs 7910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-er 7911  df-ec 7913  df-qs 7917 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator