Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadomf Structured version   Visualization version   GIF version

 Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 9404 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.)
Hypotheses
Ref Expression
Assertion
Ref Expression
uniimadomf ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1883 . . 3 𝑧(𝐹𝑥) ≼ 𝐵
2 uniimadomf.1 . . . . 5 𝑥𝐹
3 nfcv 2793 . . . . 5 𝑥𝑧
42, 3nffv 6236 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2793 . . . 4 𝑥
6 nfcv 2793 . . . 4 𝑥𝐵
74, 5, 6nfbr 4732 . . 3 𝑥(𝐹𝑧) ≼ 𝐵
8 fveq2 6229 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
98breq1d 4695 . . 3 (𝑥 = 𝑧 → ((𝐹𝑥) ≼ 𝐵 ↔ (𝐹𝑧) ≼ 𝐵))
101, 7, 9cbvral 3197 . 2 (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 ↔ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵)
11 uniimadomf.2 . . 3 𝐴 ∈ V
12 uniimadomf.3 . . 3 𝐵 ∈ V
1311, 12uniimadom 9404 . 2 ((Fun 𝐹 ∧ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
1410, 13sylan2b 491 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 2030  Ⅎwnfc 2780  ∀wral 2941  Vcvv 3231  ∪ cuni 4468   class class class wbr 4685   × cxp 5141   “ cima 5146  Fun wfun 5920  ‘cfv 5926   ≼ cdom 7995 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-ac2 9323 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-card 8803  df-acn 8806  df-ac 8977 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator