![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadom | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
Ref | Expression |
---|---|
uniimadom.1 | ⊢ 𝐴 ∈ V |
uniimadom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadom | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniimadom.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | funimaex 6089 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
3 | 2 | adantr 472 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | fvelima 6362 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
5 | 4 | ex 449 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
6 | breq1 4763 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵)) | |
7 | 6 | biimpd 219 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
8 | 7 | reximi 3113 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
9 | r19.36v 3187 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
11 | 5, 10 | syl6 35 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵))) |
12 | 11 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵))) |
13 | 12 | imp 444 | . . . 4 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵)) |
14 | 13 | ralrimiv 3067 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) |
15 | unidom 9478 | . . 3 ⊢ (((𝐹 “ 𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) | |
16 | 3, 14, 15 | syl2anc 696 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) |
17 | imadomg 9469 | . . . . 5 ⊢ (𝐴 ∈ V → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | uniimadom.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
20 | 19 | xpdom1 8175 | . . . 4 ⊢ ((𝐹 “ 𝐴) ≼ 𝐴 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
22 | 21 | adantr 472 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
23 | domtr 8125 | . 2 ⊢ ((∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵) ∧ ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | |
24 | 16, 22, 23 | syl2anc 696 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∀wral 3014 ∃wrex 3015 Vcvv 3304 ∪ cuni 4544 class class class wbr 4760 × cxp 5216 “ cima 5221 Fun wfun 5995 ‘cfv 6001 ≼ cdom 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-ac2 9398 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-card 8878 df-acn 8881 df-ac 9052 |
This theorem is referenced by: uniimadomf 9480 |
Copyright terms: Public domain | W3C validator |