![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexb | Structured version Visualization version GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 6997 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | uniexr 7014 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 199 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 Vcvv 3231 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-pow 4873 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 df-in 3614 df-ss 3621 df-pw 4193 df-uni 4469 |
This theorem is referenced by: ixpexg 7974 rankuni 8764 unialeph 8962 ttukeylem1 9369 tgss2 20839 ordtbas2 21043 ordtbas 21044 ordttopon 21045 ordtopn1 21046 ordtopn2 21047 ordtrest2 21056 isref 21360 islocfin 21368 txbasex 21417 ptbasin2 21429 ordthmeolem 21652 alexsublem 21895 alexsub 21896 alexsubb 21897 ussid 22111 ordtrest2NEW 30097 omsfval 30484 brbigcup 32130 isfne 32459 isfne4 32460 isfne4b 32461 fnessref 32477 neibastop1 32479 fnejoin2 32489 prtex 34484 |
Copyright terms: Public domain | W3C validator |