![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniex2 | Structured version Visualization version GIF version |
Description: The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
uniex2 | ⊢ ∃𝑦 𝑦 = ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfun 7116 | . . . 4 ⊢ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | eluni 4591 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) | |
3 | 2 | imbi1i 338 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
4 | 3 | albii 1896 | . . . . 5 ⊢ (∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
5 | 4 | exbii 1923 | . . . 4 ⊢ (∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
6 | 1, 5 | mpbir 221 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) |
7 | 6 | bm1.3ii 4936 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥) |
8 | dfcleq 2754 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) | |
9 | 8 | exbii 1923 | . 2 ⊢ (∃𝑦 𝑦 = ∪ 𝑥 ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) |
10 | 7, 9 | mpbir 221 | 1 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∪ cuni 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-uni 4589 |
This theorem is referenced by: uniex 7119 |
Copyright terms: Public domain | W3C validator |