![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3238), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unieq 4476 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
3 | 2 | eleq1d 2715 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
4 | uniex2 6994 | . . 3 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
5 | 4 | issetri 3241 | . 2 ⊢ ∪ 𝑥 ∈ V |
6 | 1, 3, 5 | vtocl 3290 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 df-uni 4469 |
This theorem is referenced by: vuniex 6996 unex 6998 iunpw 7020 elxp4 7152 elxp5 7153 1stval 7212 2ndval 7213 fo1st 7230 fo2nd 7231 cnvf1o 7321 brtpos2 7403 ixpsnf1o 7990 dffi3 8378 cnfcom2 8637 cnfcom3lem 8638 cnfcom3 8639 trcl 8642 rankc2 8772 rankxpl 8776 rankxpsuc 8783 acnlem 8909 dfac2a 8990 fin23lem14 9193 fin23lem16 9195 fin23lem17 9198 fin23lem38 9209 fin23lem39 9210 itunisuc 9279 axdc3lem2 9311 axcclem 9317 ac5b 9338 ttukey 9378 wunex2 9598 wuncval2 9607 intgru 9674 pnfxr 10130 prdsval 16162 prdsds 16171 wunfunc 16606 wunnat 16663 arwval 16740 catcfuccl 16806 catcxpccl 16894 zrhval 19904 mreclatdemoBAD 20948 ptbasin2 21429 ptbasfi 21432 dfac14 21469 ptcmplem2 21904 ptcmplem3 21905 ptcmp 21909 cnextfvval 21916 cnextcn 21918 minveclem4a 23247 xrge0tsmsbi 29914 locfinreflem 30035 pstmfval 30067 pstmxmet 30068 esumex 30219 msrval 31561 dfrdg2 31825 trpredex 31861 fvbigcup 32134 ptrest 33538 heiborlem1 33740 heiborlem3 33742 heibor 33750 dicval 36782 aomclem1 37941 dfac21 37953 ntrrn 38737 ntrf 38738 dssmapntrcls 38743 fourierdlem70 40711 caragendifcl 41049 cnfsmf 41270 setrec1lem3 42761 setrec2fun 42764 |
Copyright terms: Public domain | W3C validator |