HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unierri Structured version   Visualization version   GIF version

Theorem unierri 29297
Description: If we approximate a chain of unitary transformations (quantum computer gates) 𝐹, 𝐺 by other unitary transformations 𝑆, 𝑇, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
unierr.1 𝐹 ∈ UniOp
unierr.2 𝐺 ∈ UniOp
unierr.3 𝑆 ∈ UniOp
unierr.4 𝑇 ∈ UniOp
Assertion
Ref Expression
unierri (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))

Proof of Theorem unierri
StepHypRef Expression
1 unierr.1 . . . . . . . 8 𝐹 ∈ UniOp
2 unopbd 29208 . . . . . . . 8 (𝐹 ∈ UniOp → 𝐹 ∈ BndLinOp)
31, 2ax-mp 5 . . . . . . 7 𝐹 ∈ BndLinOp
4 bdopf 29055 . . . . . . 7 (𝐹 ∈ BndLinOp → 𝐹: ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . . 6 𝐹: ℋ⟶ ℋ
6 unierr.2 . . . . . . . 8 𝐺 ∈ UniOp
7 unopbd 29208 . . . . . . . 8 (𝐺 ∈ UniOp → 𝐺 ∈ BndLinOp)
86, 7ax-mp 5 . . . . . . 7 𝐺 ∈ BndLinOp
9 bdopf 29055 . . . . . . 7 (𝐺 ∈ BndLinOp → 𝐺: ℋ⟶ ℋ)
108, 9ax-mp 5 . . . . . 6 𝐺: ℋ⟶ ℋ
115, 10hocofi 28959 . . . . 5 (𝐹𝐺): ℋ⟶ ℋ
12 unierr.3 . . . . . . . 8 𝑆 ∈ UniOp
13 unopbd 29208 . . . . . . . 8 (𝑆 ∈ UniOp → 𝑆 ∈ BndLinOp)
1412, 13ax-mp 5 . . . . . . 7 𝑆 ∈ BndLinOp
15 bdopf 29055 . . . . . . 7 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
1614, 15ax-mp 5 . . . . . 6 𝑆: ℋ⟶ ℋ
17 unierr.4 . . . . . . . 8 𝑇 ∈ UniOp
18 unopbd 29208 . . . . . . . 8 (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp)
1917, 18ax-mp 5 . . . . . . 7 𝑇 ∈ BndLinOp
20 bdopf 29055 . . . . . . 7 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
2119, 20ax-mp 5 . . . . . 6 𝑇: ℋ⟶ ℋ
2216, 21hocofi 28959 . . . . 5 (𝑆𝑇): ℋ⟶ ℋ
2311, 22hosubcli 28962 . . . 4 ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ
24 nmop0h 29184 . . . 4 (( ℋ = 0 ∧ ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ) → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
2523, 24mpan2 663 . . 3 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
26 0le0 11311 . . . . 5 0 ≤ 0
27 00id 10412 . . . . 5 (0 + 0) = 0
2826, 27breqtrri 4811 . . . 4 0 ≤ (0 + 0)
295, 16hosubcli 28962 . . . . . 6 (𝐹op 𝑆): ℋ⟶ ℋ
30 nmop0h 29184 . . . . . 6 (( ℋ = 0 ∧ (𝐹op 𝑆): ℋ⟶ ℋ) → (normop‘(𝐹op 𝑆)) = 0)
3129, 30mpan2 663 . . . . 5 ( ℋ = 0 → (normop‘(𝐹op 𝑆)) = 0)
3210, 21hosubcli 28962 . . . . . 6 (𝐺op 𝑇): ℋ⟶ ℋ
33 nmop0h 29184 . . . . . 6 (( ℋ = 0 ∧ (𝐺op 𝑇): ℋ⟶ ℋ) → (normop‘(𝐺op 𝑇)) = 0)
3432, 33mpan2 663 . . . . 5 ( ℋ = 0 → (normop‘(𝐺op 𝑇)) = 0)
3531, 34oveq12d 6810 . . . 4 ( ℋ = 0 → ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))) = (0 + 0))
3628, 35syl5breqr 4822 . . 3 ( ℋ = 0 → 0 ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3725, 36eqbrtrd 4806 . 2 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3816, 10hocofi 28959 . . . . . 6 (𝑆𝐺): ℋ⟶ ℋ
3911, 38, 22honpncani 29020 . . . . 5 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) = ((𝐹𝐺) −op (𝑆𝑇))
4039fveq2i 6335 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) = (normop‘((𝐹𝐺) −op (𝑆𝑇)))
413, 8bdopcoi 29291 . . . . . . 7 (𝐹𝐺) ∈ BndLinOp
4214, 8bdopcoi 29291 . . . . . . 7 (𝑆𝐺) ∈ BndLinOp
4341, 42bdophdi 29290 . . . . . 6 ((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp
4414, 19bdopcoi 29291 . . . . . . 7 (𝑆𝑇) ∈ BndLinOp
4542, 44bdophdi 29290 . . . . . 6 ((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp
4643, 45nmoptrii 29287 . . . . 5 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇))))
475, 16, 10hocsubdiri 28973 . . . . . . . 8 ((𝐹op 𝑆) ∘ 𝐺) = ((𝐹𝐺) −op (𝑆𝐺))
4847fveq2i 6335 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) = (normop‘((𝐹𝐺) −op (𝑆𝐺)))
493, 14bdophdi 29290 . . . . . . . 8 (𝐹op 𝑆) ∈ BndLinOp
5049, 8nmopcoi 29288 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
5148, 50eqbrtrri 4807 . . . . . 6 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
52 bdopln 29054 . . . . . . . . . 10 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
5314, 52ax-mp 5 . . . . . . . . 9 𝑆 ∈ LinOp
5453, 10, 21hoddii 29182 . . . . . . . 8 (𝑆 ∘ (𝐺op 𝑇)) = ((𝑆𝐺) −op (𝑆𝑇))
5554fveq2i 6335 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) = (normop‘((𝑆𝐺) −op (𝑆𝑇)))
568, 19bdophdi 29290 . . . . . . . 8 (𝐺op 𝑇) ∈ BndLinOp
5714, 56nmopcoi 29288 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
5855, 57eqbrtrri 4807 . . . . . 6 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
59 nmopre 29063 . . . . . . . 8 (((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp → (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ)
6043, 59ax-mp 5 . . . . . . 7 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ
61 nmopre 29063 . . . . . . . 8 (((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp → (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ)
6245, 61ax-mp 5 . . . . . . 7 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ
63 nmopre 29063 . . . . . . . . 9 ((𝐹op 𝑆) ∈ BndLinOp → (normop‘(𝐹op 𝑆)) ∈ ℝ)
6449, 63ax-mp 5 . . . . . . . 8 (normop‘(𝐹op 𝑆)) ∈ ℝ
65 nmopre 29063 . . . . . . . . 9 (𝐺 ∈ BndLinOp → (normop𝐺) ∈ ℝ)
668, 65ax-mp 5 . . . . . . . 8 (normop𝐺) ∈ ℝ
6764, 66remulcli 10255 . . . . . . 7 ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∈ ℝ
68 nmopre 29063 . . . . . . . . 9 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
6914, 68ax-mp 5 . . . . . . . 8 (normop𝑆) ∈ ℝ
70 nmopre 29063 . . . . . . . . 9 ((𝐺op 𝑇) ∈ BndLinOp → (normop‘(𝐺op 𝑇)) ∈ ℝ)
7156, 70ax-mp 5 . . . . . . . 8 (normop‘(𝐺op 𝑇)) ∈ ℝ
7269, 71remulcli 10255 . . . . . . 7 ((normop𝑆) · (normop‘(𝐺op 𝑇))) ∈ ℝ
7360, 62, 67, 72le2addi 10792 . . . . . 6 (((normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∧ (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))) → ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
7451, 58, 73mp2an 664 . . . . 5 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
7543, 45bdophsi 29289 . . . . . . 7 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp
76 nmopre 29063 . . . . . . 7 ((((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ)
7775, 76ax-mp 5 . . . . . 6 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7860, 62readdcli 10254 . . . . . 6 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7967, 72readdcli 10254 . . . . . 6 (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) ∈ ℝ
8077, 78, 79letri 10367 . . . . 5 (((normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∧ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))) → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
8146, 74, 80mp2an 664 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
8240, 81eqbrtrri 4807 . . 3 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
83 nmopun 29207 . . . . . . 7 (( ℋ ≠ 0𝐺 ∈ UniOp) → (normop𝐺) = 1)
846, 83mpan2 663 . . . . . 6 ( ℋ ≠ 0 → (normop𝐺) = 1)
8584oveq2d 6808 . . . . 5 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = ((normop‘(𝐹op 𝑆)) · 1))
8664recni 10253 . . . . . 6 (normop‘(𝐹op 𝑆)) ∈ ℂ
8786mulid1i 10243 . . . . 5 ((normop‘(𝐹op 𝑆)) · 1) = (normop‘(𝐹op 𝑆))
8885, 87syl6eq 2820 . . . 4 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = (normop‘(𝐹op 𝑆)))
89 nmopun 29207 . . . . . . 7 (( ℋ ≠ 0𝑆 ∈ UniOp) → (normop𝑆) = 1)
9012, 89mpan2 663 . . . . . 6 ( ℋ ≠ 0 → (normop𝑆) = 1)
9190oveq1d 6807 . . . . 5 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (1 · (normop‘(𝐺op 𝑇))))
9271recni 10253 . . . . . 6 (normop‘(𝐺op 𝑇)) ∈ ℂ
9392mulid2i 10244 . . . . 5 (1 · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇))
9491, 93syl6eq 2820 . . . 4 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇)))
9588, 94oveq12d 6810 . . 3 ( ℋ ≠ 0 → (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) = ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9682, 95syl5breq 4821 . 2 ( ℋ ≠ 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9737, 96pm2.61ine 3025 1 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  ccom 5253  wf 6027  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  cle 10276  chil 28110  0c0h 28126   +op chos 28129  op chod 28131  normopcnop 28136  LinOpclo 28138  BndLinOpcbo 28139  UniOpcuo 28140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cc 9458  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217  ax-hilex 28190  ax-hfvadd 28191  ax-hvcom 28192  ax-hvass 28193  ax-hv0cl 28194  ax-hvaddid 28195  ax-hfvmul 28196  ax-hvmulid 28197  ax-hvmulass 28198  ax-hvdistr1 28199  ax-hvdistr2 28200  ax-hvmul0 28201  ax-hfi 28270  ax-his1 28273  ax-his2 28274  ax-his3 28275  ax-his4 28276  ax-hcompl 28393
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-omul 7717  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-cn 21251  df-cnp 21252  df-lm 21253  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cfil 23271  df-cau 23272  df-cmet 23273  df-grpo 27681  df-gid 27682  df-ginv 27683  df-gdiv 27684  df-ablo 27733  df-vc 27748  df-nv 27781  df-va 27784  df-ba 27785  df-sm 27786  df-0v 27787  df-vs 27788  df-nmcv 27789  df-ims 27790  df-dip 27890  df-ssp 27911  df-lno 27933  df-nmoo 27934  df-0o 27936  df-ph 28002  df-cbn 28053  df-hnorm 28159  df-hba 28160  df-hvsub 28162  df-hlim 28163  df-hcau 28164  df-sh 28398  df-ch 28412  df-oc 28443  df-ch0 28444  df-shs 28501  df-pjh 28588  df-hosum 28923  df-homul 28924  df-hodif 28925  df-h0op 28941  df-nmop 29032  df-lnop 29034  df-bdop 29035  df-unop 29036  df-hmop 29037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator