![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unieqi | Structured version Visualization version GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
unieqi | ⊢ ∪ 𝐴 = ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | unieq 4476 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 = ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-uni 4469 |
This theorem is referenced by: elunirab 4480 unisn 4483 unidif0 4868 univ 4949 uniop 5006 dfiun3g 5410 op1sta 5654 op2nda 5658 dfdm2 5705 unixpid 5708 unisuc 5839 iotajust 5888 dfiota2 5890 cbviota 5894 sb8iota 5896 dffv4 6226 funfv2f 6306 funiunfv 6546 elunirnALT 6550 riotauni 6657 ordunisuc 7074 1st0 7216 2nd0 7217 unielxp 7248 brtpos0 7404 dfrecs3 7514 recsfval 7522 tz7.44-3 7549 uniqs 7850 xpassen 8095 dffi3 8378 dfsup2 8391 sup00 8411 r1limg 8672 jech9.3 8715 rankxplim2 8781 rankxplim3 8782 rankxpsuc 8783 dfac5lem2 8985 kmlem11 9020 cflim2 9123 fin23lem30 9202 fin23lem34 9206 itunisuc 9279 itunitc 9281 ituniiun 9282 ac6num 9339 rankcf 9637 dprd2da 18487 dmdprdsplit2lem 18490 lssuni 18988 basdif0 20805 tgdif0 20844 neiptopuni 20982 restcls 21033 restntr 21034 pnrmopn 21195 cncmp 21243 discmp 21249 hauscmplem 21257 unisngl 21378 xkouni 21450 uptx 21476 ufildr 21782 ptcmplem3 21905 utop2nei 22101 utopreg 22103 zcld 22663 icccmp 22675 cncfcnvcn 22771 cnmpt2pc 22774 cnheibor 22801 evth 22805 evth2 22806 iunmbl 23367 voliun 23368 dvcnvrelem2 23826 ftc1 23850 aannenlem2 24129 circtopn 30032 locfinref 30036 tpr2rico 30086 cbvesum 30232 unibrsiga 30377 sxbrsigalem3 30462 dya2iocucvr 30474 sxbrsigalem1 30475 sibf0 30524 sibff 30526 sitgclg 30532 probfinmeasbOLD 30618 coinflipuniv 30671 cvmliftlem10 31402 dfon2lem7 31818 dfrdg2 31825 frrlem6 31914 frrlem7 31915 frrlem10 31916 frrlem11 31917 noetalem4 31991 dfiota3 32155 dffv5 32156 dfrecs2 32182 dfrdg4 32183 ordcmp 32571 bj-nuliotaALT 33145 mptsnun 33316 finxp1o 33359 ftc1cnnc 33614 uniqsALTV 34242 refsum2cnlem1 39510 lptre2pt 40190 limclner 40201 limclr 40205 stoweidlem62 40597 fourierdlem42 40684 fourierdlem80 40721 fouriercnp 40761 qndenserrn 40837 salexct3 40878 salgencntex 40879 salgensscntex 40880 subsalsal 40895 0ome 41064 borelmbl 41171 mbfresmf 41269 cnfsmf 41270 incsmf 41272 smfmbfcex 41289 decsmf 41296 smfpimbor1lem2 41327 setrec2 42767 |
Copyright terms: Public domain | W3C validator |