![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmex | Structured version Visualization version GIF version |
Description: If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
unidmex.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
unidmex.x | ⊢ 𝑋 = ∪ dom 𝐹 |
Ref | Expression |
---|---|
unidmex | ⊢ (𝜑 → 𝑋 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidmex.x | . 2 ⊢ 𝑋 = ∪ dom 𝐹 | |
2 | unidmex.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | dmexg 7262 | . . 3 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
4 | uniexg 7120 | . . 3 ⊢ (dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ dom 𝐹 ∈ V) |
6 | 1, 5 | syl5eqel 2843 | 1 ⊢ (𝜑 → 𝑋 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∪ cuni 4588 dom cdm 5266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: omessle 41218 caragensplit 41220 omeunile 41225 caragenuncl 41233 omeunle 41236 omeiunlempt 41240 carageniuncllem2 41242 caragencmpl 41255 |
Copyright terms: Public domain | W3C validator |