![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unibrsiga | Structured version Visualization version GIF version |
Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
unibrsiga | ⊢ ∪ 𝔅ℝ = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 22786 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | unisg 30536 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → ∪ (sigaGen‘(topGen‘ran (,))) = ∪ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ (sigaGen‘(topGen‘ran (,))) = ∪ (topGen‘ran (,)) |
4 | df-brsiga 30575 | . . 3 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
5 | 4 | unieqi 4597 | . 2 ⊢ ∪ 𝔅ℝ = ∪ (sigaGen‘(topGen‘ran (,))) |
6 | uniretop 22787 | . 2 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
7 | 3, 5, 6 | 3eqtr4i 2792 | 1 ⊢ ∪ 𝔅ℝ = ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ∪ cuni 4588 ran crn 5267 ‘cfv 6049 ℝcr 10147 (,)cioo 12388 topGenctg 16320 Topctop 20920 sigaGencsigagen 30531 𝔅ℝcbrsiga 30574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-pre-lttri 10222 ax-pre-lttrn 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-ioo 12392 df-topgen 16326 df-top 20921 df-bases 20972 df-siga 30501 df-sigagen 30532 df-brsiga 30575 |
This theorem is referenced by: elmbfmvol2 30659 mbfmcnt 30660 br2base 30661 isrrvv 30835 orvcelval 30860 dstrvprob 30863 |
Copyright terms: Public domain | W3C validator |