Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unhe1 Structured version   Visualization version   GIF version

Theorem unhe1 38396
 Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
unhe1 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → (𝑅𝑆) hereditary 𝐴)

Proof of Theorem unhe1
StepHypRef Expression
1 df-he 38384 . . 3 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2 df-he 38384 . . 3 (𝑆 hereditary 𝐴 ↔ (𝑆𝐴) ⊆ 𝐴)
3 imaundir 5581 . . . 4 ((𝑅𝑆) “ 𝐴) = ((𝑅𝐴) ∪ (𝑆𝐴))
4 unss 3820 . . . . 5 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) ↔ ((𝑅𝐴) ∪ (𝑆𝐴)) ⊆ 𝐴)
54biimpi 206 . . . 4 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) → ((𝑅𝐴) ∪ (𝑆𝐴)) ⊆ 𝐴)
63, 5syl5eqss 3682 . . 3 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) → ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
71, 2, 6syl2anb 495 . 2 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
8 df-he 38384 . 2 ((𝑅𝑆) hereditary 𝐴 ↔ ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
97, 8sylibr 224 1 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → (𝑅𝑆) hereditary 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∪ cun 3605   ⊆ wss 3607   “ cima 5146   hereditary whe 38383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-he 38384 This theorem is referenced by:  sshepw  38400
 Copyright terms: Public domain W3C validator