![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexb | Structured version Visualization version GIF version |
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
Ref | Expression |
---|---|
unexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3903 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
2 | 1 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
3 | uneq2 3904 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
4 | 3 | eleq1d 2824 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
5 | vex 3343 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | vex 3343 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | unex 7121 | . . 3 ⊢ (𝑥 ∪ 𝑦) ∈ V |
8 | 2, 4, 7 | vtocl2g 3410 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
9 | ssun1 3919 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
10 | ssexg 4956 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
11 | 9, 10 | mpan 708 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) |
12 | ssun2 3920 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
13 | ssexg 4956 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) | |
14 | 12, 13 | mpan 708 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) |
15 | 11, 14 | jca 555 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
16 | 8, 15 | impbii 199 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∪ cun 3713 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-sn 4322 df-pr 4324 df-uni 4589 |
This theorem is referenced by: unexg 7124 sucexb 7174 fodomr 8276 fsuppun 8459 fsuppunbi 8461 cdaval 9184 bj-tagex 33281 |
Copyright terms: Public domain | W3C validator |